
ime

Dissipative Particle Dynamics
and Coarse-Graining
Review of Existing Techniques, Trials with Evolutionary Computation
Master’s Thesis

ATILIM GÜNEŞ BAYDİN

Complex Adaptive Systems Programme
Department of Applied Physics
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2008

Master’s Thesis in the Complex Adaptive Systems Programme

Dissipative Particle Dynamics
and Coarse-Graining

Review of Existing Techniques, Trials with Evolutionary Computation

ATILIM GÜNEŞ BAYDİN

Department of Applied Physics
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2008

Dissipative Particle Dynamics and Coarse-Graining
Review of Existing Techniques, Trials with Evolutionary Algorithms
Master’s Thesis in the Complex Adaptive Systems Programme
ATILIM GÜNEŞ BAYDİN
Supervised by MARTIN NILSSON JACOBI

© ATILIM GÜNEŞ BAYDİN, 2008

Department of Applied Physics
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone: + 46 (0)31-772 1000
Web address: http://www.chalmers.se/ap

Cover: 125 particles arranged in a cubic lattice.

Printed at Chalmers Reproservice
Göteborg, Sweden 2008

I

Dissipative Particle Dynamics and Coarse-Graining
Review of Existing Techniques, Trials with Evolutionary Computation
Master’s Thesis in the Complex Adaptive Systems Programme

ATILIM GÜNEŞ BAYDİN

Department of Applied Physics
Chalmers University of Technology

ABSTRACT

This thesis provides a review of the dissipative particle dynamics (DPD) technique, a
commonly used mesoscopic simulation tool in computational physics; and an investigation
of the feasibility of using evolutionary optimization techniques for the determination of
interactions in the DPD model from measurements in atomistic simulations. The text starts
with a brief overview of the historical development of particle models to provide a
foundation for the discussion of coarse-graining, i.e. the description of a system at a less
detailed level by smoothing out fine details that are not relevant for a particular study.
Detailed introductions of fundamental computational physics methods are presented, such
as molecular dynamics and Monte Carlo simulations, together with their application areas.
The DPD technique is introduced, with detailed information about its historical
development, interpretation as a mesoscopic model, and application areas. The two parts of
the DPD coarse-graining process, i.e. the determination of conservative and dissipative
interactions, are discussed. Major existing techniques for DPD coarse-graining are presented,
such as the inverse Monte Carlo (IMC) procedure specialized for the determination of
conservative interactions from structural observables. The thesis continues with an
investigation of the feasibility of using evolutionary computation, a generic optimization
approach with its roots in the biological process of evolution, for the determination of
interactions in the DPD model, based on fitness measures comparing equilibrium and
transport properties of the system with those measured in atomistic simulations. Taking the
simple point charge water model as a case study, the technique is first used for the
determination of conservative interactions from the radial distribution function (with the aim
of validating the approach by results from the IMC technique) and after that, for the
determination of dissipative interactions based on escape time distributions. The practicality
of having relatively long DPD simulations within fitness evaluations of such a procedure is
confirmed, also establishing a general framework for applying evolutionary optimization
techniques for the determination of functional forms in possibly other models within the
field of computational physics.

Keywords: Dissipative particle dynamics; Coarse-graining; Genetic algorithms; Molecular
dynamics, Monte Carlo simulations

II

Dissipativ partikel dynamik och grovkorning
Översyn av befintliga tekniker, prövningar med evolutionära algoritmer
Examensarbete inom masterprogrammet Komplexa adaptiva system

ATILIM GÜNEŞ BAYDİN

Institutionen för teknisk fysik
Chalmers tekniska högskola

SAMMANFATTNING

Den här avhandlingen ger en översikt över den dissipativ partikel dynamik (DPD) metoden,
som är ett vanligt verktyg för mesoskopisk simulering i beräkningsfysik, och en utredning av
möjligheterna att använda evolutionära optimering tekniker för bestämning av interaktioner
i DPD modellen från mätningar i atomistiska simuleringar. Texten inleds med en kort
översyn av den historiska utvecklingen av partikel modeller för att ge en grund för
diskussionen av grovkorning, dvs en beskrivning av ett system på en mindre detaljerad nivå
genom att jämna ut fina detaljer som inte är relevanta för en särskild studie. Detaljerade
introduktioner av grundläggande beräkningsfysik metoder presenteras, som molekylär
dynamik och Monte Carlo simuleringar, tillsammans med deras tillämpningsområden. Den
DPD teknik införs, med detaljerad information om dess historiska utveckling, uppfattning
som en mesoskopisk modell, och applikationsområden. De båda delarna av DPD
grovkorning, dvs bestämning av konservativa och dissipativa interaktioner, diskuteras.
Viktiga befintliga tekniker för DPD grovkorning presenteras, till exempel invers Monte Carlo
(IMC), som är specialiserat för bestämning av konservativa interaktioner från strukturella
observabler. Avhandlingen fortsätter med en undersökning av möjligheterna att använda
evolutionära beräkning, en generell optimering metod som efterhärmar den biologiska
evolutionen, för bestämning av interaktioner i DPD modell, baserad på anpassningsmått
som jämför jämviktsläge och transport egenskaper hos systemet med dem som uppmätts i
atomistiska simuleringar. Med den enkel punkt laddning vatten modellen som en fallstudie,
tekniken används först för bestämning av konservativa interaktioner från radial distribution
funktion (i syfte att validera den metoden med resultat från IMC teknik) och sedan, för
bestämning av dissipativa interaktioner från flykt tid distributioner. Den möjligheten att ha
relativt långa DPD simuleringar inom anpassningsutvärderingar av ett sådant förfarande är
bekräftad, även är en allmän inramning bildad för användning av evolutionära optimering
tekniker för bestämning av former av funktioner i eventuellt andra modeller inom området
beräkningsfysik.

Nyckelord: Dissipativ partikel dynamik; Grovkorning; Genetisk algoritm; Molekylär
dynamik, Monte Carlo simulering

III

Contents
ABSTRACT ... I

SAMMANFATTNING .. II

Contents ... III

Preface ... V

Notations ... VI

1 Introduction .. 1

1.1 The idea of particles ... 1

1.2 Computational physics .. 2

1.2.1 Molecular dynamics (MD) .. 3

1.2.2 Monte Carlo (MC) simulations ... 7

1.2.3 Other simulation techniques ... 9

1.2.4 Applications .. 10

1.3 Organization of the thesis ... 11

2 Dissipative Particle Dynamics (DPD) .. 12

2.1 Original formulation by Hoogerbrugge and Koelman ... 12

2.2 Español and Warren’s constraint ... 14

2.3 System of units .. 15

2.4 Interpretation and validity .. 17

2.5 Applications .. 18

2.5.1 The PACE project ... 18

3 Coarse-Graining into DPD .. 20

3.1 DPD coarse-graining techniques .. 20

3.2 Reconstruction of conservative potentials .. 20

3.2.1 Inverse Monte Carlo ... 21

3.2.2 Other techniques ... 24

3.3 Adjustment of dissipative and stochastic forces .. 24

3.3.1 Velocity autocorrelation .. 25

3.3.2 Force covariance ... 26

3.3.3 Other techniques ... 27

4 DPD Coarse-Graining through Evolutionary Computation .. 28

4.1 Evolutionary computation .. 28

4.1.1 Genetic algorithms (GA) .. 29

IV

4.2 Model experiment .. 31

4.3 GA and DPD ... 32

4.3.1 Representation of solutions ... 32

4.3.2 Choice of fitness measures .. 35

4.3.3 Fitness evaluations ... 36

4.4 Implementation ... 39

4.5 Results .. 42

4.5.1 Simulation setup ... 42

4.5.2 Comparison with existing techniques ... 43

4.5.2.1 Equilibrium properties .. 43

4.5.2.2 Transport properties .. 45

5 Conclusions ... 48

5.1 Further research .. 48

References .. 50

Appendix A – Algorithms ... 55

Derivation of the Verlet algorithm ... 55

Derivation of the velocity Verlet algorithm .. 55

Appendix B – Source Codes .. 57

MD and DPD ... 57

Inverse Monte Carlo... 71

Genetic algorithms ... 80

V

Preface
This is the report of the thesis work I have conducted for the completion of my study in the
international master’s programme of Complex Adaptive Systems at the Department of Applied
Physics at Chalmers University of Technology. It was performed under the supervision of
Assistant Prof. Martin Nilsson Jacobi and with the valuable help of his PhD student Johan
Nyström, in conjunction with their research in the Complex Systems group, Division of
Physical Resource Theory, Department of Energy and Environment.

By means of this study, I have had the opportunity to delve rather deep into a field of
research that has interested me for long, namely, computational physics. Considering that
my knowledge of this field was rather superficial at the beginning of this work, I feel
particularly satisfied that most of the domain now seems accessible to me, after going
through a good deal of literature and creating implementations for the specific case of
dissipative particle dynamics. I hope this work will be useful for others and of relevance to
my future studies.

Atılım Güneş Baydin

Göteborg, Sweden

September 2008

Acknowledgments
I would like to extend my heartfelt thanks to my parents Nihayet Bayraktar and Süleyman
Zafer Baydin, for raising me free from all the dogmas of the society, for their never-ending
support, and basically, for bringing me into existence; my dear friend Melek Tendürüs,
especially for her help in the planning and proofreading stage of this thesis; and my close
friends Emre Duran and Koray Savaş Erer, for keeping me motivated throughout my studies.

VI

Notations 𝑎 Scalar variable 𝒂 Vector variable ‖𝒂‖ Vector magnitude 𝒂ෝ Unit vector 𝑨 Matrix 〈⋯ 〉 Ensemble average, or a long time average in a single system

1
This int
particle
molecul
dissipat
the imp
Carlo si
MD tec
techniqu

1.1
The ide
philosop
century
ατομον
founded
century
with ma
lasted a

During
of Galil
further
century
of small

Figure
Jonas Å

1 Roughly
clear-cut

Intro
troductory c
 models. W
lar dynamic
tive particle

plementation
imulation t
chnique an
ues are also

The ide
a that matte
pher Leucip

y BC, Demo
ν, atomon), w
d, atomism,

y BC, who m
any other fi

all the way u

the 17th cen
leo Galilei
support for

y, using the
l natural nu

1.1 The size
Ångström), w

y, the average
size of an atom

ductio
chapter sta
Within the
cs (MD) sim
e dynamics
nal details o
technique is

nd the main
o covered.

ea of par
er is compo
ppus and hi
critus calls

which is the
, had its fol

maintained
ields of phy
until the Re

ntury, the at
and René

r the idea of
concept for

umbers.

e of atoms1 is
while the size
Enrico Ferm

e effective size
m.

on
rts with a v

e general f
mulations is
 (DPD) mo
of the MD t
s introduce
n incentive

rticles
osed of very
is student D
these eleme
e basis for
llowers unti
that matter

ysical scienc
naissance.

tomist thou
Descartes.

f atoms, par
r his explan

of the order
e of atomic n

mi). Shown he

e of the outer

very brief o
framework
s dealt with

odel to be d
technique a

ed. A gener
es for the

y small buil
Democritus(
ents ατομα
the modern
il it was ma
 is not mad

ce, the ideas

ught underw
The devel

rticularly by
nation of the

of 10ିଵ଴ m
nuclei is of th
ere is the str

rmost filled el

overview of
of compu

h in detail, p
discussed in
applying eq
ral discussio
developme

lding blocks
(Weinberg,
α (atoma, Gr
n name atom
arginalized
de of atoms,
s and influe

went a reviv
lopment of
y the work
e fact that e

(also called 1
he order of 10
ucture of a H

lectron orbit, a

the histori
utational p
providing a
n Chapter 2,
qually well t
on of the sh
ent of mes

s is traced b
2003). In hi
eek for “ind
m. The scho
by Aristotle
, but rather
ence of Aris

val, most no
modern c

of John Dal
elements alw

 1 ångström, 0ିଵହ m (also
Helium atom

as one cannot

cal develop
hysics, the

a foundation
, with almo
to DPD. Th
hortcoming
oscopic sim

back to pre-
is writings i
divisible”; s
ool of thoug
e during th
is continuo
totle on this

otably by th
chemistry p
lton in early
ways react

named after
called 1 ferm

m.

t speak about

1

pment of
e theory
n for the
ost all of

he Monte
gs of the
mulation

-Socratic
in the 5th
singular:
ght thus

he late 4th
ous. Like
s subject

he works
provided
y the 19th
in ratios

Anders
mi, after

a definite

2

It was realized during the late 19th and early 20th centuries that atoms are in fact not
indivisible, beginning with the discovery of the electron by Joseph John Thomson and
subsequent experiments by Ernest Rutherford, which proved that the atom is a largely
empty structure with almost all of its mass concentrated in a tiny nucleus orbited by
electrons (Figure 1.1) (Veltman, 2003). These developments led to the Bohr model of the atom
created by Niels Bohr in 1913, i.e. electrons in orbits of different energy levels around a
nucleus composed by protons and neutrons, which still remains the model of atomic
structure most commonly known by the general public.

During the 20th century, the trend of discovering further substructures has continued,
revealing the divisibility of particles which were previously thought to be indivisible and
elementary. For instance, in the current state of quantum physics, protons and neutrons are
merely two members within the huge family of particles called hadrons, and are actually
composite entities consisting of elementary particles called quarks. Particularly during the
1960s, the discovery of an ever increasing number of particles led to a situation dubbed “the
particle zoo”, lasting until the formulation of the Standard Model of elementary particles
(Figure 1.2Figure 1.2), which postulates two fundamental particle groups: fermions (matter
constituents; categorized into quarks and leptons, of which the electron is a type) and bosons
(force carriers). Although this current model is in very good agreement with experimental
data, it is known to have several shortcomings and expected to get modified, for reasons
beyond the scope of this study.

Figure 1.2 Elementary particles of the Standard Model. The antiparticle counterparts are not shown.

1.2 Computational physics
Rapid advancements in computer science during the late 20th century have made the
numerical simulation of complex mathematical models in many fields of science feasible and
commonplace. Computer simulations are now a standard tool for experimenting with
models not only in fields of natural science as diverse as physics, biology, and earth sciences,
but also in social sciences like economics and psychology. Amid these, computational
physics has enjoyed particularly success, given that physics as a field features very precise
theoretical models which allow calculations replicating real world dynamics to a very high
degree of fidelity. In this respect, computational physics is often regarded to fall within the
domain of theoretical physics, but it is also possible to consider it a branch of experimental

3

physics, because it is concerned with the observation of physical phenomena and gathering
data.

In this thesis we will focus on computational physics simulations of particle systems. With
such simulations, arguably the most important preparation step is to determine the physical
scale of the phenomenon that will be the subject of the study and thus the appropriate model
providing the right amount of detail.

At the lowest scale, there are what are called ab initio (or first principles) computer simulation
techniques, deriving the interactions within the system from quantum mechanical relations,
such as the computation of the forces acting on atomic nuclei by solving the electronic
structure problem “on-the-fly”, i.e. continuously at each time step of the simulation (Marx &
Hutter, 2000). Techniques within this family are very accurate and in widespread use in
materials science and chemistry, but suffer from extremely high computational costs.

For the purposes of this study, we are concerned with a description of matter at a higher and
far less detailed level, without dealing with the degrees of freedom on the quantum scale. In
the simulation techniques that will be presented in the following sections, atoms, atom
groups within molecules (such as a methyl group −CH3 within an organic chain), or entire
molecules can be represented by single point particles which are then governed only by
classical mechanics. In these techniques, the interactions within the system are approximated
in terms of classical potential functions, which can have two-body, three-body, or many-
body forms.

This is also the current first stage of what is called coarse-graining, i.e. the description of a
system at a less detailed level by smoothing out fine details that are not relevant for a
particular study, in order to keep the computational costs at a manageable level. The subject
of coarse-graining will be covered in detail in Chapter 3.

1.2.1 Molecular dynamics (MD)

Molecular dynamics (MD) is a simulation technique in which the dynamics of a system of
particles is obtained by the numerical integration of their equations of motion under classical
(or Newtonian) mechanics, developed during the 1950s and 1960s by the seminal papers of
Alder and Wainwright (1957); Gibson, Goland, Milgram, and Vineyard (1960); and Rahman
(1964). The time evolution for a 𝑁-body MD system is described by the equations of motion

𝜕𝒓௜𝜕𝑡 = 𝒗௜ , 𝜕𝒗௜𝜕𝑡 = 𝒂௜ , (1.1)

where 𝒓௜, 𝒗௜, and 𝒂௜ are the position, velocity, and acceleration vectors of the 𝑖th particle, in
that order. The accelerations 𝒂௜ in the system are given by Newton’s second law of motion

 𝑭௜ = 𝑚௜𝒂௜ , (1.2)

where 𝑚௜ are particle masses; and the forces 𝑭௜ are given by the gradients of potential 𝑉 with
respect to the positions of the particles:

4

 𝑭௜ = −∇𝒓೔𝑚௜𝑉(𝒓௜, … , 𝒓ே) . (1.3)

The function 𝑉 represents the potential energy of the particle system for every possible
configuration of particles {𝒓௜, … , 𝒓ே} and is commonly defined in terms of the sum of two-
body (or pairwise) interactions, although many-body forms are also used in particular areas
of research, such as with metals and semiconductors (Carlsson, 1990). 𝑉 can be written as a
sum of pairwise interactions 𝜙൫𝑟௜௝൯ as

 𝑉(𝒓௜, … , 𝒓ே) = ෍ ෍ 𝜙൫𝑟௜௝൯௝வ௜௜ , (1.4)

where 𝑟௜௝ = ห𝒓௜ − 𝒓௝ห is the distance between the pair of particles 𝑖 and 𝑗; and the condition 𝑗 > 𝑖 in the inner summation ensures that the contribution of each pair to the potential is only
considered once.

A common example of pair potentials is the Lennard-Jones potential (named after John
Edward Lennard-Jones, who formulated it in 1924), basically describing atoms of a noble gas
interacting at long range through attracting van der Waals forces, and at short range,
repelling forces resulting from overlapping electron orbits (Figure 1.3). It is given by the
formula:

 𝜙௅௃(𝑟) = 4𝜀 ൤ቀ 𝜎𝑟 ቁଵଶ − ቀ 𝜎𝑟 ቁ଺൨ , (1.5)

where 𝜖 determines the depth of the attractive potential well and 𝜎 determines the distance
where the potential crosses zero and continues to positive infinity, effectively determining
the radius of particles in the system. The Lennard-Jones potential was used in earliest MD
simulations of liquid argon (Rahman, 1964; Verlet, 1967) and is still commonly encountered
in recent studies.

Figure 1.3 The Lennard-Jones potential with 𝜀 = 𝜎 = 1.

5

An important part of MD simulations is the selection of a time integration algorithm that will
be used to integrate the equations of motion (1.1) and produce the system dynamics. These
use the finite difference method of approximating solutions of differential equations, using
discretized time with a small time step ∆𝑡, and as such, are prone to the accumulation of
truncation and round-off errors during the run of simulations. Since the MD technique is
used to compute the time evolution of a system over a very large number of time steps, a
simple Euler type integrator

𝒓௜(𝑡 + ∆𝑡) = 𝒓௜(𝑡) + 𝒗௜(𝑡)∆𝑡 + 12 𝒂௜(𝑡)∆𝑡ଶ ,𝒗௜(𝑡 + ∆𝑡) = 𝒗௜(𝑡) + 𝒂௜(𝑡)∆𝑡 , 𝒂௜(𝑡 + ∆𝑡) = 𝑭௜(𝑡 + ∆𝑡)𝑚௜

(1.6)

produces numerical errors (𝑂(∆𝑡ଷ) for 𝒓௜ and 𝑂(∆𝑡ଶ) for 𝒗௜) that are too big to tolerate
(Giordano & Nakanishi, 2006).

To reduce the errors associated with time integration, a large variety of integration schemes
has been developed over the years and the scheme known as the Verlet algorithm (Verlet,
1967) is frequently encountered. For performing the simulations presented in the following
chapters of this study, a variation of this standard algorithm, called the velocity Verlet
algorithm (Swope, Andersen, Berens, & Wilson, 1982) (equations (1.7)) has been implemented.
Derivations of the standard and velocity Verlet algorithms are given in Appendix A.

𝒓௜(𝑡 + ∆𝑡) = 𝒓௜(𝑡) + 𝒗௜(𝑡)∆𝑡 + 12 𝒂௜(𝑡)∆𝑡ଶ𝒗௜(𝑡 + ∆𝑡2) = 𝒗௜(𝑡) + 12 𝒂௜(𝑡)∆𝑡 𝒂௜(𝑡 + ∆𝑡) = 𝑭௜(𝑡 + ∆𝑡)𝑚௜ 𝒗௜(𝑡 + ∆𝑡) = 𝒗௜(𝑡 + ∆𝑡2) + 12 𝒂௜(𝑡 + ∆𝑡)∆𝑡

(1.7)

When putting the time integration algorithm into practice, the interaction potential (which,
by definition, has infinite range but approaches zero at long distances) is nearly always
truncated at a carefully selected cutoff distance 𝑟௖ to achieve generous savings of
computational cost, discarding a large number of potential evaluations that would contribute
very little to the potential. To avoid artifacts in the conservation of energy, i.e. energy jumps
induced by pairs crossing over the cutoff distance, the value of the interaction potential at 𝑟௖
should be very close to zero. As an example, for the pairwise Lennard-Jones potential 𝜙௅௃(𝑟),
this can be assured by shifting the potential so that it vanishes at 𝑟௖ (equation (1.8)). A
commonly used value of the cutoff distance for the Lennard-Jones potential is 2.5 𝜎 (Figure
1.3).

 𝜙௅௃ᇱ (𝑟) = ൜𝜙௅௃(𝑟) − 𝜙௅௃(𝑟௖) if 𝑟 ≤ 𝑟௖0 if 𝑟 > 𝑟௖ (1.8)

6

Another important topic in the implementation of the MD technique, and other particle
simulation techniques in general, is how the boundary conditions are handled. Except in
studies specifically interested in superficial phenomena like the analysis of surface tension or
multi-phase systems, MD simulations are generally performed using periodic boundary
conditions. This is achieved by defining a simulation box and having all its sides loop back to
the opposite side, such that when a particle leaves the simulation box by passing through a
side of the simulation box, it will reappear at the opposite side. This has the same effect with
envisioning that the simulation box is replicated indefinitely along all Cartesian directions
and that each particle in the original box represents an infinite set of its images in each of
these boxes, effectively obtaining an infinite system completely filling space. This would
mean that particles sufficiently close (less than 𝑟௖) to a boundary will interact not only with
the other particles in the simulation box, but also with their images in the neighboring boxes.
A substantial simplification of this complicated interaction scheme is provided by what is
called the minimum image criterion: If all side lengths of the simulation box are greater than 2𝑟௖, any neighboring images of a particle 𝑗 will be separated by more than 2𝑟௖, meaning that a
particle 𝑖 can be within the cutoff distance 𝑟௖ with at most one of these images (Figure 1.4). In
other words, of all the images of another particle 𝑗, a particle 𝑖 will only interact with the
closest, on the condition that all side lengths of the simulation box are greater than 2𝑟௖
(Rapaport, 2004).

Even if the cutoff distance technique significantly improves the computation time spent by
the evaluation of potentials in a time step of the simulation, there still remains the necessity
to compute the distances between all particle pairs at each time step, to check whether these
are less than 𝑟௖. Another commonly used technique in the implementation of MD
simulations, the Verlet neighbor lists introduced by Verlet (1967), provides considerable
speedups by keeping a list of “neighbors” for each particle, i.e. those that are within a range 𝑟௡ > 𝑟௖ of the particle, and using these lists for the evaluation of interactions. This list can
updated with an arbitrary interval of time steps determined beforehand(Verlet, 1967), or
dynamically when any particle has moved a distance greater than ଵଶ (𝑟௡ − 𝑟௖) (Chialvo &
Debenedetti, 1992), which generally occurs every 10 – 20 time steps with a carefully selected 𝑟௡.

Figure 1.4 The nearest image criterion.

7

The primary observables in classical MD simulations are macroscopic thermodynamic
properties such as pressure, energy, heat capacity, etc. The connection between the
microscopic measurements on the simulated particles and these macroscopic observables is
provided by statistical mechanics. MD simulations generate a sequence of points in the
microscopic phase space as a function of time, i.e. any computed averages will be time
averages of just one system; while thermodynamic observables are defined in terms of
ensemble averages, i.e. averages taken over a large number of replicas of the system. The link
between these two is established by the ergodic hypothesis, supposing that the average of an
observable over time will be the same with its ensemble average:

 〈𝐴〉ensemble = 〈𝐴〉time . (1.9)

This is based on the assumption that if one allows the system to evolve indefinitely in time,
the system will eventually pass through all possible microstates. In practice, this means that
the measurements will get more accurate with increasing time steps. In addition, because the
simulations are of fixed duration, one must make sure that the simulation is performed over
a sufficiently large amount of time steps in order to sample a sufficient amount of the phase
space.

The most important limitation of the MD technique is that the high computational costs of
doing atomistic (or, as it is usually called, microscopic) simulations severely restrict the
spatial and temporal scales accessible by this technique, given the average computational
resources available today. The length scales recently accessible by MD simulations have been
of the order of 10ିଵ଴ m (or 1 Å), simulating time spans of the order of 10ିଽ s (or 1 ns)
(Sutmann, 2002); while simulations going beyond 10ି଺ s (or 1 μs) were made possible by
distributed parallel algorithms and specialized computer hardware. This limitation is one of
the major motivations for the continuing research on coarse-grained mesoscopic models, like
lattice based methods briefly discussed in Section 1.2.3 and the dissipative particle dynamics
technique that will be introduced in Chapter 2.

1.2.2 Monte Carlo (MC) simulations

The Monte Carlo (MC) method is a statistical approach for finding approximate solutions to
problems by means of random sampling. In addition to physics, it is widely applied in other
natural sciences, mathematics, engineering, and social sciences (Krauth, 2006).

Although much earlier treatments in the subject exist—most notably in connection with the
“Buffon’s needle problem”2, such as by Barbier (1860)—the invention of the modern MC
technique is associated with Enrico Fermi, when he was studying the properties of the then
newly-discovered neutron in 1930 (Metropolis, 1987). It was further developed during the
1940s by physicists working in the nuclear weapons program of the United States, at the Los
Alamos National Laboratory(Ulam, Richtmyer, & von Neumann, 1947). The technique was
given its name by Nicholas Metropolis, in reference to the famous casino in Monaco,

2 The problem is, given a needle of length 𝑙 dropped on a floor striped with parallel lines 𝑡 units apart, to find the
probability that the needle will land such that it crosses a line. (The answer is (2𝑙)/(𝑡𝜋).) The problem is first
posed by and named after the 18th century French naturalist Georges-Louis Leclerc, Comte de Buffon.

8

considering the use of randomness and the repetitive nature of the sampling process
(Metropolis & Ulam, The Monte Carlo method, 1949).

A definition given by Anderson (1999) describes the MC technique as “the art of
approximating an expectation by the sample mean of a function of simulated random
variables”. This can be clarified by means of a simple example, and a commonly used one is
the MC calculation of the value of 𝜋 by simple sampling. Consider the unit square
overlapping one quarter of the unit circle in Figure 1.5. If we shoot a number of random
points uniformly distributed within the unit square, the ratio of the ones falling within the
unit circle to the total number of points will approximate the ratio of the area of the quarter
of the unit circle to the area of the unit square, which is exactly 𝜋/4. In Figure 1.5, there are 4000 random points, of which 3152 fall within the unit circle, so that 𝜋/4 = 3152/4000,
giving the value of 𝜋 ≅ 3.152. The approximation will get more accurate with larger
numbers of random samples and in the limit of infinity it will be exactly equal to 𝜋 by
definition.

Figure 1.5 Calculation of the value of 𝜋 by the Monte Carlo technique.

Beyond simple sampling with uniformly distributed samples, there is usually a need to cover
the sample space according to a specific probability distribution function and this is called
importance sampling. A frequently used importance sampling algorithm is the Metropolis
algorithm, originally published for the specific case of Boltzmann distribution (Metropolis,
Rosenbluth, Rosenbluth, Teller, & Teller, 1953) and later generalized to other distributions
(Hastings, 1970). The standard Metropolis algorithm works by constructing a Markov chain
that has the Boltzmann distribution as its equilibrium distribution, as follows:

• Generate the initial microstate 𝑆 and calculate the resulting potential 𝑉 = 𝑉(𝑆)
• Modify the microstate 𝑆 to 𝑆test and calculate the test potential 𝑉test = 𝑉(𝑆test)
• If 𝑉௧௘௦௧ < 𝑉 then

o 𝑆 ← 𝑆test and 𝑉 ← 𝑉test
• else

o Generate uniform random number 0 ≤ 𝑅 ≤ 1

9

o If 𝑒ି (ೇtestషೇ)ೖಳ೅ > 𝑅 (𝑘஻: Boltzmann constant; T: temperature) then
 𝑆 ← 𝑆test and 𝑉 ← 𝑉test

o End if
• End if
• Repeat from the second step until the end condition is satisfied

For a molecular MC simulation simulating a system of 𝑁 particles governed by a potential 𝑉(𝒓௜, … , 𝒓ே), as in equation (1.3), the structure 𝑅 would comprise the positions of particles {𝒓௜, … , 𝒓ே}.

It is important to note that the simulation steps in the MC technique are steps in
configuration space and there is no notion of “time” in MC simulations. This is in contrast to
MD, where the simulation steps are explicit time steps. Nevertheless, MC is often used to
compute time averages in simulated processes and this is again granted by the ergodic
hypothesis discussed in the previous section (equation (1.9)), this time in the other direction,
assuming that phase space averages are identical to the time averages.

In addition to the classical MC simulations where the Metropolis algorithm with the
Boltzmann distribution is used to obtain thermodynamic equilibrium properties, the
technique is being used for other studies such as quantum MC (QMC) for solving electronic
structure properties and kinetic MC (KMC) for simulating the time evolution of natural
processes with known rates.

The MC technique (with the Metropolis algorithm) forms the basis of the inverse Monte
Carlo (IMC) technique of reconstructing effective conservative potentials for coarse-grained
simulations, which will be discussed in Chapter 3.

1.2.3 Other simulation techniques

MD is a very precise simulation technique. However, as discussed in Section 1.2.1, this comes
at the cost of high computational requirements and applicability in a narrow spatiotemporal
scale, effectively limited to microscopic3 simulations. When there is a need to simulate
phenomena on larger scales, particularly when one is concerned with time scales more
relevant to biological processes—such as the formation of lipid membranes or proteins—the
so-called mesoscopic models are employed, which reside a few steps over the microscopic,
but below the macroscopic, models in the coarse-graining ladder.

An important class of mesoscopic simulations are the lattice gas automata (LGA), which
involve the discretization of space as a lattice and the movement of particles according to
local rules (Figure 1.6), capable of replicating the macroscopic behavior expected by Navier-
Stokes equations of fluid dynamics(Frisch, Hasslacher, & Pomeau, 1986). The relatively new
lattice Boltzmann methods (LBM) have been developed from the LGA technique, solving
some of the problems intrinsic in LGA, such as high numerical noise (Succi, 2001).

3 In these types of studies, “microscopic” is usually meant to denote all-atom (atomistic) simulations close to nm
scale, rather than the conventional meaning of the word denoting objects that can be seen under light microscope.

10

Figure 1.6 A lattice gas automaton on hexagonal grid.

Even if lattice methods like LGA and LBM have major advantages in dealing with complex
boundaries, computations without any round-off error and absolute stability, and being very
suitable for implementations on parallel computer architectures, they have also serious
drawbacks such as the lack of Galilean invariance and the difficulty of handling three
dimensional problems. Another family of mesoscopic techniques has been created as a result
of similar considerations that led to the development of lattice methods, while largely
alleviating their shortcomings. These are based on stochastic Langevin equations, smoothing
out fast degrees of freedom within the system, such as Brownian dynamics (BD) and its close
relative dissipative particle dynamics (DPD), which will be introduced in Chapter 2 as the
main subject of this thesis.

For the simulation of macroscopic scales, various specialized techniques such as vortex
methods (VM) and smoothed particle hydrodynamics (SPH) exist, but these are outside the
scope of this thesis.

1.2.4 Applications

Computational physics simulations today are an essential tool for research in studies such as
of liquids, surfaces, biomolecules, plasmas, and solid state phenomena. Of these, molecular
biology simulations have been receiving increasing attention, such as protein structure
prediction and the simulation of their interactions with other molecules (Figure 1.7). At the
same time, attempts of simulating systems of very large size are being made, like the recent 50 ns MD simulation of the complete Satellite Tobacco Mosaic Virus comprising one million
atoms (Freddolino, Arkhipov, Larson, McPherson, & Schulten, 2006). One particularly
important area receiving substantial interest and funding is the pharmaceutical research on
biomolecules and drug design. Computational studies on the delivery, action mechanisms,
and metabolization of drugs allow very early testing of their properties, cutting costs by
eliminating the need to synthesize the actual drug for laboratory tests until a far later stage of
research.

Figure

1.3
The rem
the diss
simulat
Chapter
the inte
inverse
using e
coarse-g
graining
derivati
implem

e 1.7 Snapsho

Organi
maining par
sipative pa
ing soft m
r 3 by a dis
eractions in

Monte Car
evolutionary
grained forc
g technique
ions of the

mentations w

ot of a molec
li

ization o
rt of the the
article dyna
atter system

scussion of
n the DPD m
rlo (IMC) p
y algorithm
ces in the D
es. The the

used time
written for th

cular dynami
ipid bilayer (

of the th
esis after thi
amics (DPD
ms in meso
the coarse-
model are

procedure. C
ms (specific
DPD model
sis is concl
integration

his thesis, a

ics simulatio
(Dodd & Dem

hesis
is introduct
D) simulatio
oscopic sca
-graining pr
derived fro

Chapter 4 p
cally, genet
l and how
luded in C
n algorithm
are given.

on of the pore
mpsey, 2008

tion is organ
on techniqu

ales, is intro
rocess and
om microsc
presents tes
tic algorith
these result
hapter 5. In

ms, together

e-forming pep
8).

nized as fol
ue, commo
oduced in
the techniq

copic simul
sts evaluatin
hms) in der

ts compare
n the appe
r with the

ptide magan

llows. In Ch
only interpr
detail; follo

ques throug
lations, such
ng the feasi
riving the

e to existing
endices that
source cod

11

in, in a

hapter 2,
reted as
owed in

gh which
h as the
ibility of
form of

g coarse-
t follow,

de of the

12

2 Dissipative Particle Dynamics (DPD)
Molecular dynamics, covered in the previous chapter, is a powerful simulation technique
proven to produce highly realistic results in a wide variety of applications. However, the
computational costs of the detailed interaction model in this paradigm severely limit its
applicability beyond extremely small spatiotemporal scales. Within the family of simulation
techniques designed to overcome this limitation, we focus on dissipative particle dynamics,
which allows, at the cost of reduced resolution, the study of complex hydrodynamic
phenomena in extensive scales. This chapter introduces the technique through following its
chronological development, also discussing its applications and how it compares to other
particle simulation techniques in terms of scale and performance.

2.1 Original formulation by Hoogerbrugge and Koelman
The dissipative particle dynamics (DPD) technique has been introduced in the 1990s as a
novel scheme for mesoscopic simulations of complex fluids (Hoogerbrugge & Koelman,
1992; Koelman & Hoogerbrugge, 1993). In addition to interactions based on a conservative
potential like in a MD simulation, it includes dissipative and stochastic interactions. This
approach is ultimately based on the Langevin equation, a stochastic differential equation
describing Brownian motion in a potential, accounting for the omitted degrees of freedom by
a viscous force and a noise term.

The original DPD model is described by

𝜕𝒓௜𝜕𝑡 = 𝒗௜ ,
𝑚௜ 𝜕𝒗௜𝜕𝑡 = 𝑭௜ , (2.1)

where 𝒓௜, 𝒗௜, and 𝑚௜ are the position, velocity, and mass of particle 𝑖, respectively. The total
force 𝑭௜ acting on each particle consists of three parts:

 𝑭௜ = ෍൫𝑭௜௝஼ + 𝑭௜௝஽ + 𝑭௜௝ௌ ൯௝ஷ௜ , (2.2)

where 𝑭௜௝஼ , 𝑭௜௝஽ , and 𝑭௜௝ௌ represent the conservative, dissipative, and stochastic forces between
particles 𝑖 and 𝑗, in that order. The conservative force

 𝑭௜௝஼ = 𝐹஼൫𝑟௜௝൯ 𝒓ො௜௝ , (2.3)

where 𝐹஼(𝑟) is a non-negative (repulsive) scalar function determining the form of
conservative interactions, 𝒓௜௝ = 𝒓௜ − 𝒓௝ is the distance between particles 𝑖 and 𝑗, 𝑟௜௝ = ฮ𝒓௜௝ฮ is
its magnitude, and 𝒓ො௜௝ = 𝒓௜௝/𝑟௜௝ is the unit vector from 𝑗 to 𝑖, depends on the particular

13

system of interest, although in literature it is frequently taken as a soft repulsion with the
form

 𝐹஼(𝑟) = ൝ 𝑎 ൬1 − 𝑟𝑟௖൰ if 𝑟 ≤ 𝑟௖0 if 𝑟 > 𝑟௖ , (2.4)

where 𝑎 is a parameter determining the maximum repulsion between the particles and 𝑟௖ is
the cut-off distance.

The dissipative and stochastic forces are given by

𝑭௜௝஽ = −𝛾𝜔൫𝑟௜௝൯൫𝒓ො௜௝ ∙ 𝒗௜௝൯𝒓ො௜௝ ,𝑭௜௝ௌ = 𝜎𝜔൫𝑟௜௝൯𝜁௜௝𝒓ො௜௝ , (2.5)

where 𝛾 and 𝜎 are parameters determining the strength of dissipative and stochastic
interactions, 𝜔(𝑟) is a non-negative weight function described further below, and 𝒗௜௝ = 𝒗௜ −𝒗௝ is the difference in the velocities of particles 𝑖 and 𝑗. 𝜁௜௝ is a Gaussian white-noise term
with the properties

𝜁௜௝(𝑡) = 𝜁௝௜(𝑡) ,〈𝜁௜௝(𝑡)〉 = 0 ,〈𝜁௜௝(𝑡)𝜁௜ᇲ௝ᇲ(𝑡ᇱ)〉 = ൫𝛿௜௜ᇲ𝛿௝௝ᇲ + 𝛿௜௝ᇲ𝛿௝௜ᇲ൯𝛿(𝑡 − 𝑡ᇱ) , (2.6)

where 𝛿௜௝ is the Kronecker delta function and 𝛿(𝑡) is the Dirac delta function. The condition
of symmetry between 𝜁௜௝ and 𝜁௝௜ ensures the conservation of momentum by the stochastic
force. In practice, 𝜁௜௝ is commonly implemented as a uniform random variable, instead of
Gaussian, taking less computational time to generate (Groot & Warren, Dissipative particle
dynamics: Bridging the gap between atomistic and mesoscopic simulation, 1997). It has been
customary in literature for the weight function 𝜔(𝑟) to have the form

 𝜔(𝑟) = ൝1 − 𝑟𝑟௖ if 𝑟 ≤ 𝑟௖0 if 𝑟 > 𝑟௖ , (2.7)

since it was introduced as a simple choice by Hoogerbrugge and Koelman (1992) (Figure 2.1).

14

Figure 2.1 The common form of 𝜔(𝑟), with 𝑟௖ = 1.

One important consequence of the DPD formulation is that all interactions are pairwise
additive and satisfy Newton’s third law, so that the linear and angular momentum is
conserved (Hoogerbrugge & Koelman, 1992) and the fact that all the forces depend only on
relative positions 𝒓௜௝ and velocities 𝒗௜௝ makes the model Galilean-invariant. The satisfaction
of these conditions make DPD a consistent hydrodynamics model particularly appealing for
the study of mesoscopic soft matter systems, so that it has gained substantial support in
literature, which led the way for rigorous theoretical analyses of its hydrodynamic and
thermodynamic properties and its further development.

2.2 Español and Warren’s constraint
Despite qualitative observations, there was no theoretical justification that DPD has correct
hydrodynamic behavior until the undertaking by Español and Warren (1995), formulating
first the Fokker-Planck equation for studying the equilibrium properties of the stochastic
differential equation describing DPD; and by Español (1995), deriving the macroscopic
hydrodynamic variables starting from a microscopic description.

The main result of these studies is that, unlike the conservative force 𝑭௜௝஼ , the dissipative and
stochastic forces 𝑭௜௝஽ and 𝑭௜௝ௌ cannot be independent and must be coupled together through a
fluctuation-dissipation relation, so that equation (2.5) becomes

𝑭௜௝஽ = −𝛾𝜔஽൫𝑟௜௝൯൫𝒓ො௜௝ ∙ 𝒗௜௝൯𝒓ො௜௝ ,𝑭௜௝ௌ = 𝜎𝜔ௌ൫𝑟௜௝൯𝜁௜௝𝒓ො௜௝ , (2.8)

with the condition

 𝜎ଶ = 2𝛾𝑘஻𝑇 , (2.9)

where 𝑘஻ is the Boltzmann’s constant and 𝑇 is the temperature and 𝜔஽(𝑟) and 𝜔ௌ(𝑟) are
separate weight functions satisfying

15

 𝜔஽(𝑟) = [𝜔ௌ(𝑟)]ଶ. (2.10)

These conditions are necessary to ensure that in thermodynamic equilibrium the dissipative
and stochastic forces will keep the system in the canonical, or NVT, ensemble4. For
simplicity, the weight functions are usually selected to be similar in form to the conservative
force 𝐹஼(𝑟) (Figure 2.1), that is

 𝜔஽(𝑟) = [𝜔ௌ(𝑟)]ଶ = ቐ൬1 − 𝑟𝑟௖൰ଶ if 𝑟 ≤ 𝑟௖0 if 𝑟 > 𝑟௖ . (2.11)

An alternative notation for the formulae describing the dissipative and stochastic part of the
dynamics is given by Eriksson, Jacobi, Nyström, and Tunstrøm (2008a), where they combine
equations (2.8), (2.9), and (2.10) into the simplified form

𝑭௜௝஽ = −ൣ𝜔൫𝑟௜௝൯൧ଶ൫𝒓ො௜௝ ∙ 𝒗௜௝൯𝒓ො௜௝ ,𝑭௜௝ௌ = ඥ2𝑘஻𝑇 𝜔൫𝑟௜௝൯ 𝜁௜௝𝒓ො௜௝ , (2.12)

and absorb the parameter 𝜎 into the definition of the function 𝜔(𝑟), for instance,

 𝜔(𝑟) = ൝𝜎 ൬1 − 𝑟𝑟௖൰ if 𝑟 ≤ 𝑟௖0 if 𝑟 > 𝑟௖ . (2.13)

Using this notation, the final description of the DPD dynamics is formed by equations (2.1) –
(2.3) and (2.12), where the function 𝐹஼(𝑟) describing conservative dynamics and the function 𝜔(𝑟) describing the dissipative and stochastic dynamics need to be determined for the
particular system under study.

2.3 System of units
Simulations with the DPD model, as with other models in general, are conventionally
performed in non-dimensionalized or reduced units, based on the characteristic physical
dimensions of the system under study. Working with reduced units is preferred mainly
because they are physically more meaningful and easier to interpret, and the results obtained
become applicable to all materials modeled by the same potential, i.e. preventing the
conduction of essentially duplicate simulations (Hadjiconstantinou, 2006).

Reduced units are obtained by expressing all the quantities in the simulation in terms of
selected base units which are characterizing the system, in order to make the equations

4 The canonical or NVT ensemble is a statistical ensemble of microstates in which the number of particles N,
system volume V, and temperature T are conserved (i.e. the system is in energy exchange with a heat bath). This
is in contrast to the natural ensemble of MD simulations, the microcanonical or NVE ensemble, where energy E is
constrained and the temperature is free to fluctuate.

16

dimensionless, such as picking the value of 𝑘஻𝑇 in Joules (depending on temperature) as a
base unit 𝜀 for energy and dividing all quantities with the dimension of energy with 𝜀. Table
2.1 presents further examples.

Table 2.1 Conversion to and from reduced units for some commonly used dimensions,
 with 𝜀, 𝜆, and 𝜇 as the base units for energy, length, and mass, respectively.

Dimension In reduced units In physical units

Energy 𝐸∗ = 𝐸𝜀 𝐸 = 𝜀𝐸∗

Length 𝐿∗ = 𝐿𝜆 𝐿 = 𝜆𝐿∗

Mass 𝑚∗ = 𝑚𝜇 𝑚 = 𝜇𝑚∗

Temperature 𝑇∗ = 𝑘஻𝑇𝜀 𝑇 = 𝜀𝑇∗𝑘஻

Density 𝜌∗ = 𝜆ଷ𝜌 𝜌 = 𝜌∗𝜆ଷ

Force 𝐹∗ = 𝜆𝐹𝜀 𝐹 = 𝜀𝐹∗𝜆

Pressure 𝑃∗ = 𝜆ଷ𝑃𝜀 𝑃 = 𝜀𝑃∗𝜆ଷ

Time 𝑡∗ = 𝑡ඨ 𝜀𝜇𝜆ଷ 𝑡 = 𝑡∗ඨ𝜇𝜆ଷ𝜀

Figure 2.2 The Lennard-Jones potential and basis for reduced units.

17

As an example, for the Lennard-Jones potential (equation (1.5)), the particle diameter 𝜎 and
the depth of the potential well 𝜀, together with the mass of the simulated particles, provide a
meaningful set of base units for simulations (Figure 2.2). Another commonly used and
convenient basis for the reduced length is the cutoff distance 𝑟௖.

In computer implementation of simulations, reduced units have the benefit of keeping the
computed values within a manageable range (e.g. a length of 0.5 𝜎 instead of 5 × 10ିଵ଴ m) so
that the risk of arithmetic overflows are eliminated. Another important advantage brought
by the use of reduced units is increased computational efficiency in the execution of
algorithms, e.g. for the case of Lennard-Jones potential, taking 𝜀 and 𝜎 as the base units
reduces equation (1.5) to the computationally more efficient form:

 𝜙௅௃(𝑟) = 4(𝑟ିଵଶ − 𝑟ି଺) . (2.14)

All quantities given in the rest of this thesis are in reduced units, unless noted otherwise.

2.4 Interpretation and validity
In the seminal paper by Hoogerbrugge and Koelman (1992), the DPD is introduced as a
“novel particle-based scheme combining the best of both MD and LGA simulations” which is
“much faster than MD and much more flexible than LGA”. The interpretation of DPD in the
literature has been mostly in line with this, i.e. as a different and complete coarse-grained
model by itself, with the form of the conservative and stochastic/dissipative forces
depending on a particular system of interest.

However, one should also note that although DPD can be seen as a complete coarse-grained
model with the conservative and stochastic/dissipative forces as its integral parts, it may also
be treated just as a novel thermostat with the stochastic/dissipative forces, applicable to any
MD simulation, which conceptually owns and brings with it the conservative force (Groot &
Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic
simulation, 1997; Soddemann, Dünweg, & Kremer, 2003). Viewed in this way, it is
comparable to other MD thermostats generating the NVT ensemble, such as the Nosé-
Hoover (NH) thermostat (Nosé, 1984; Hoover, 1985) or the stochastic dynamics (SD)
thermostat (Schneider & Stoll, 1978), with significant advantages like locality and
momentum conservation leading to correct hydrodynamics and the stabilization of the
numerical integration scheme (Soddemann et al., 2003).

Another topic of importance regarding DPD is its interpretation as a coarse-grained
mesoscopic model. This is again suggested first by Hoogerbrugge and Koelman (1992),
stressing that the DPD scheme reproduces the Navier-Stokes behavior “with a number of
particles orders of magnitude lower than the number typically needed in LGA and MD
simulations”, justifying an interpretation that a single DPD particle actually represents a
larger number of atoms or molecules that would be represented individually, for instance, in
a MD simulation(Español, 1995). This, coupled with the frequent use of soft conservative
potentials in DPD simulations—meaning that DPD particles are soft clusters of molecules—
established the common understanding of DPD as a mesoscopic particle model. Again, there
are different views on the issue and there exist studies employing DPD just as a thermostat

18

to MD simulations with atomistic, hard particles (Dzwinel & Yuen, 2000; Soddemann,
Dünweg, & Kremer, 2003).

There have also been discussions regarding the true scalability of the DPD scheme.
Arguments have been raised that the applicability and performance of DPD is dependent
upon the level of coarse-graining (Dzwinel & Yuen, 2000) and that there exists a rather low
coarse-graining limit above which the technique exhibits unrealistic thermodynamic
behavior and ceases to be applicable(Trofimov, 2003). Recently, Füchslin, Fellermann,
Eriksson, and Ziock (2007) addressed these concerns by proposing a physically consistent
scaling scheme for DPD, asserting that this allows it to function truly scale-free.

2.5 Applications
As noted in Chapter 1, the applicability of all-atom simulation techniques such as MD is
currently limited to just a few tens of nanoseconds of molecular motion. In fields such as
molecular biology and some subfields of chemistry, many interesting phenomena occur in
time and length scales much larger than those pertaining to the motion of individual atoms
or molecules, such as membrane structuring (Groot, 2004). The DPD technique has been
developed in order to allow simulations in scales more relevant to these processes, by
omitting degrees of freedom not immediately essential for the description of the system at
the studied level. Using mesoscopic descriptions, DPD models allow simulating length scales
reaching micrometers, while the use of soft interactions make feasible relatively large
integration time steps and total simulation times of the order of microseconds (Sutmann,
2002; Heyes, Baxter, Tüzün, & Qin, 2004).

Because mesoscopic DPD simulations allow access to relatively large length and time scales
and creating simulations of multi-component systems with DPD is rather straightforward—
by using tags to distinguish particles of a particular type and making the forces in the system
dependent on the tags of interacting particles—DPD has been a favored simulation
technique for simulations involving a large variety of fields, including fluid mechanics (Kim
& Phillips, 2004), colloidal suspensions (Boek, Coveney, & Lekkerkerker, 1996; Whittle &
Dickinson, 2001), polymers (Schlijper, Hoogerbrugge, & Manke, 1995; Chen, Phan-Thien,
Fan, & Khoo, 2004), pattern formation in developmental biology (Ceicedo-Carvajal &
Shinbrot, 2008), medicine (Dzwinel, Boryczko, & Yuen, 2003; Filipovic, Kojic, & Tsuda, 2006),
and molecular self-assembly (Nakamura & Tamura, 2005; Wu, Xu, Xianfeng, Yuehong, &
Wen, 2006).

2.5.1 The PACE project

The Programmable Artificial Cell Evolution (PACE) project5 aims to lay the theoretical and
experimental foundations for creating the first generation of self-assembling, programmable,
artificial protocells, i.e. cell-like structures of minimal complexity which are capable of
sustaining a simple metabolism along with self-replication (PACE Consortium, 2007). The
project is one of the major organized efforts in the direction of producing real artificial life—as
opposed to ongoing work centered on abstract computer simulations—with the potential of

5 The PACE project has been carried out since 2004 by a consortium of 13 partners from 8 European countries in
cooperation with several organizations from the United States and is funded under the IST-FET (Future and
Emerging Technologies) section of the European Union’s 6th Framework Programme.

explaini
matter t
fundam

An earl
develop
currentl
objectiv
machine

In the P
called m
importa
micellar
Rasmus
(mprDP
with sel

Figur
inform
(DNA

ing how an
that we cal

mental quest

ly concept
ped at the L
ly hosts th

ve of whi
e”(Protocell

PACE proje
microfluidic
ant part of
r systems a
ssen, Ziock,
PD) are bei
lf-assemble

re 2.3 Life cy
mation carri
A), the heredi

nd under w
ll “living” a
tions in scie

for a sim
Los Alamos
he Protocell
ich is de
Assembly P

ect, the exp
cs, which al

the theore
and mesosc
, & Solé, 200
ng used to
d mesoscale

ycle of the Lo
er, which is a
itary molecu

(Felle

which condi
arise from
ence.

mple protoc
s National L
l Assembly
fined as
Project, 200

perimental
llows precis
etical work
copic mode
07). Extend

o study the
e structures

os Alamos Bu
an artificiall

ule of existing
ermann, Ras

tions the se
“non-living

cell is the
Laboratory
y (PAs) pro

“to produ
4).

work depe
se digital co

k is related
els of mem

ded DPD mo
interaction

s (Füchslin,

ug. The conc
y synthesize
g living orga
smussen, Zio

elf-sustainin
g” molecule

so-called L
(LANL) of

oject (in co
ce a mini

ends on th
ontrol of bi
to DPD s

mbrane-met
odels such
n of reactio
Maeke, & M

cept uses pep
ed polymer si
anisms. Redr
ock, & Solé, 2

ng and evo
es, one of th

Los Alamos
the United

ollaboration
imal self-re

he subfield
iochemical
imulations
abolism ve
as the mult

on-diffusion
McCaskill, 2

tide nucleic a
imilar to deox
rawn based o
2007).

olving collec
he yet unan

s Bug (Fig
d States. Th
n with PAC
eplicating m

of nanotec
reactions; w
of self-ass

esicles (Fell
tipole reacti

n pattern fo
2007).

acid (PNA)
xyribonuclei
n a figure gi

19

ctions of
nswered

gure 2.3)
he LANL
CE), the
molecular

chnology
while an
sembling
lermann,
ive DPD

ormation

as the
ic acid
iven in

20

3 Coarse-Graining into DPD
For the study of a particular system by the DPD simulation technique, the functional form of
the conservative force and either one of the dissipative and stochastic forces (the other will
be fixed by the conditions given in Section 2.2) need to be determined, corresponding to the
chosen coarse-graining level. This is a kind of "inverse problem", in that a DPD model has to
be constructed from given system observables that are usually taken from atomistic
simulations or real-world experiments, like radial distribution functions for the case of
conservative interactions. In DPD simulations, this has often been done by heuristic
selections and hand tuning, but techniques based on optimization algorithms minimizing a
particular error function are also being devised; and there is a need for standard procedures
for the derivation and adjustment of DPD models. This chapter provides an overview of
existing major techniques for coarse-graining.

3.1 DPD coarse-graining techniques
As discussed in Section 2.4, the dissipative and stochastic interactions in the DPD model can
be considered as a momentum-conserving thermostat for, and completely decoupled from,
an arbitrary conservative potential.

Thus, the problem of finding the correct coarse-grained DPD model for the simulation of a
system comprises two parts: the derivation of the conservative force (or equivalently,
potential) and the derivation of the dissipative and stochastic forces, or the DPD thermostat.
For fluids, the conservative potential is derived from known structural properties, most
importantly the radial distribution function, whereas the dissipative and stochastic force
components are often adjusted to match transport properties such as the diffusion
coefficient.

3.2 Reconstruction of conservative potentials
In DPD simulations, one might use an explicitly defined analytical expression for the
interaction potential describing the system to be studied, such as the Lennard-Jones potential
(equation (1.5)) commonly used as an approximation for modeling noble gases, or other
simple potentials used in abstract discussions or comparisons of various simulation
techniques, sometimes even with no intention to approximate the behavior of a real-world
substance. For cases where the simulation is intended to accurately replicate the properties of
a specific substance (or substances, for multi-component simulations) and there are no
theoretical models for the potential, the conservative potentials for use in DPD simulations
are constructed so that they recreate the structural properties of the system that will be
studied, usually measured in all-atom MD simulations.

Most techniques for the derivation of conservative interaction potentials use the radial
distribution function (RDF) as the input, and are theoretically based on a result by
Henderson (1974), stating that “for a given system under given conditions of temperature
and density, two pair potentials which give rise to the same RDF cannot differ by more than
an additive constant”. This assures that, once a potential reproducing the input RDF is
obtained, it is unique; but does not guarantee that it will be found.

21

3.2.1 Inverse Monte Carlo

The inverse Monte Carlo (IMC) method (Lyubartsev & Laaksonen, 1995; Lyubartsev,
Karttunen, Vattulainen, & Laaksonen, 2003) allows the reconstruction of conservative
potentials from a given radial distribution function (RDF), through a systematic optimization
procedure. In a coarse-graining procedure, this allows one to obtain the effective
conservative potential that should be used in the coarse-grained model to yield the same
structural properties (embodied by the RDF) measured in atomistic MD simulations or real-
world experiments.

The RDF, also known as the pair correlation function or PCF, is an important observable that
characterizes the local structure of fluids. It is based on the probability density of finding
some particle situated at a distance 𝑟 from another particle,

 𝜌(𝑟) = 〈෍ 𝛿(𝑟 − 𝑟௜)௜ 〉 , (3.1)

where 𝛿(𝑟) is the Dirac delta function and 𝑖 runs from 1 to 𝑁, the number of particles in the
system. The RDF in a system of volume 𝑉 is given by normalizing this such that

 𝑔(𝑟) = 𝑉𝑁 〈∑ ∑ 𝛿൫𝑟 − 𝑟௜௝൯௝ஷ௜௜ 〉𝑁4𝜋𝑟ଶ = 𝑉4𝜋𝑟ଶ𝑁ଶ 〈෍ ෍ 𝛿൫𝑟 − 𝑟௜௝൯௝ஷ௜௜ 〉 , (3.2)

i.e. the ratio of the average number density of particles at a distance 𝑟 from any given particle
(within a spherical shell of volume 4𝜋𝑟ଶ) to the density at a distance 𝑟 in an ideal gas at the
same overall density (𝑁/𝑉). RDF is thus the conditional probability density of finding a
particle at a distance 𝑟, given that there is a particle at the origin. By definition, 𝑔(𝑟) = 1 for
an ideal gas, and any deviation of 𝑔(𝑟) from unity reflects correlations between particles due
to inter-particle interactions (Figure 3.1). The RDF plays an important role in theories of the
liquid state. For instance, the average of any quantity that depends on pair distances 𝑟௜௝ can
be expressed as an integral over 𝑔(𝑟):

 〈𝐴〉 = 〈෍ ෍ 𝑎൫𝑟௜௝൯௝வ௜௜ 〉 = 𝑁ଶ2𝑉 න 𝑎(𝑟)𝑔(𝑟)4𝜋𝑟ଶ𝑑𝑟ஶ
଴ . (3.3)

As an example, the total average kinetic and potential energies of a monatomic system of
particles interacting by a potential Φ(𝑟) can be written as

 𝐸 = 32 𝑁𝑘஻𝑇 + 2𝜋𝑁ଶ𝑉 න Φ(𝑟)𝑔(𝑟)𝑟ଶ𝑑𝑟ஶ
଴ , (3.4)

where the first term is the total kinetic energy by the equipartition theorem and the second
term is the total potential energy integrated over 𝑔(𝑟).

22

The RDF is of particular interest because it is possible to measure it experimentally with
neutron scattering or x-ray scattering experiments on simple fluids and light scattering
experiments on colloidal suspensions. Coupled with techniques like the IMC described
below, this allows for the inferring of effective interaction potentials from experimental
observations.

Figure 3.1 An RDF plot for a liquid. A typical RDF plot has zero value at short separations up to a
certain value specific to the system, representing the immediate “shell” around a molecule that is

impenetrable because of strong repulsive forces. This is followed by a strong peak indicating the group
of molecules packed around this shell. For a liquid, the RDF quickly converges to unity at longer
distances, whereas the occurrence of sharp peaks at longer separations indicates a highly ordered

system, such as a crystalline solid.

The IMC method is basically a specialized version of the Newton-Raphson algorithm for
finding roots of a system of equations, where at each iteration the error is computed as the
difference of the target RDF from the RDF resulting from a Metropolis MC simulation
(Section 1.2.2) of the system with the test potential. For a single-component system with
pairwise interactions, the IMC method works as follows. The Hamiltonian for the system

 𝐻 = ෍ Φ൫𝑟௜௝൯௜,௝ , (3.5)

where 𝑟௜௝ is the distance between particles 𝑖 and 𝑗 and Φ൫𝑟௜௝൯ is the pair potential, is
discretized such that

 𝐻 = ෍ Φఈ𝑆ఈఈ , (3.6)

where 𝛼 = 1, … , 𝑀 is the discretization index with 𝑀 as the discretization resolution, Φఈ is
the constant step of the discretized potential between 𝑟ఈ and 𝑟ఈାଵ, and 𝑆ఈ is the number of
particle pairs with a separation within the range 𝑟ఈ to 𝑟ఈାଵ, both with 𝑟ఈ = (𝛼 − 1)𝑟௖/𝑀 (𝑟௖ is

23

the cut-off distance). In a similar fashion to equation (3.3), the average of 𝑆ఈ can be expressed
in terms of 𝑔(𝑟),

 〈𝑆ఈ〉 = 4𝜋𝑟ఈଶ 𝑟௖𝑀 𝑁ଶ2𝑉 𝑔(𝑟ఈ) , (3.7)

for sufficiently large 𝑀. After the selection of the initial potential Φఈ(଴), usually as Φఈ(଴) =−𝑘஻𝑇 ln 𝑔(𝑟ఈ), the potential of mean force, the procedure works by repeating the following
steps, starting with 𝑡 = 0:

• Do a MC simulation with potential Φఈ(௧) and compute the following

o 〈𝑆ఈ〉, from the current RDF by equation (3.7)

o Δ〈𝑆ఈ〉 = 〈𝑆ఈ〉 − 𝑆ఈ∗ , with 𝑆ఈ∗ given by the target RDF by equation (3.7)

o The covariance matrix 〈𝑆ఈ𝑆ఊ〉 − 〈𝑆ఈ〉〈𝑆ఊ〉
• Compute error terms ΔΦఊ by solving the system of linear equations

 Δ〈𝑆ఈ〉 = ෍ ቆ∂〈𝑆ఈ〉∂Φఊ ΔΦఊቇஓ , (3.8)

using the relation

∂〈𝑆ఈ〉∂Φఊ = − 〈𝑆ఈ𝑆ఊ〉 − 〈𝑆ఈ〉〈𝑆ఊ〉𝑘஻𝑇 (3.9)

• Unless the errors ΔΦఈ are sufficiently small (i.e. convergence is reached), update the
potential Φఈ(௧ାଵ) = Φఈ(௧) − 𝜆ΔΦఈ, increment 𝑡, and go to first step

The parameter 𝜆 in the update step is a small number (0 < 𝜆 < 1) much like a “learning rate”
in several optimization algorithms such as the backpropagation algorithm used in
conjunction with neural networks. It facilitates the convergence of the procedure (Figure 3.2)
by keeping the updates to the potential small in order to prevent overshooting the target
potential causing oscillations in the iterations, particularly when the initial potential Φఈ(଴) is
differs greatly from the target potential.

24

Figure 3.2 The potential 𝛷(𝑟) in the first three iterations of the IMC procedure with the sample RDF
given in Figure 3.1, starting from potential of mean force 𝛷(𝑟) = −𝑘஻𝑇 𝑙𝑛 𝑔(𝑟) (lightest color).

Iteration steps are represented with successively darker colors.

In a DPD simulation, the potential Φఈ that is converged upon by the IMC procedure is then
numerically differentiated with respect to 𝑟ఈ (in a similar fashion to equation (1.3)) to get a
discretized version of the conservative force component 𝐹஼(𝑟) (see Section 2.1).

3.2.2 Other techniques

Some other techniques for the determination of coarse grained potentials have been
developed particularly for polymer simulations, such as the derivation of effective pair
potentials from the RDF by using a hypernetted-chain (HNC) relation, by Louis, Bolhuis,
Hansen, and Meijer (2000); and the work by Forrest and Suter (1995), in which rapidly
fluctuating degrees of freedom in atomistic simulations are averaged over short time scales
to obtain effective interaction potentials for coarse-grained MC simulations of polymers, a
method they call “time coarse-graining”.

In contrast to these systematic procedures, it has also been common in DPD literature to
hand-tune the conservative interactions by making an arbitrary choice for the conservative
force 𝐹஼(𝑟) so as to correspond to a simple repulsive soft potential, often in the form of
equation (2.4). This function is then scaled (for the case of equation (2.4), the parameter 𝑎 is
adjusted) to match the known compressibility of the system under study (Groot & Warren,
1997).

3.3 Adjustment of dissipative and stochastic forces
Just like the fact that the conservative interactions determine the structural properties of the
system at equilibrium (like the RDF), picking the correct form for the dissipative and
stochastic interactions is crucial for matching the known transport properties of the system
studied by the DPD technique, such as diffusivity, thermal conductivity, shear viscosity and
various autocorrelation functions.

25

3.3.1 Velocity autocorrelation

The velocity autocorrelation function (VAF) is an instance of time dependent correlation
functions of the general form

 𝐶௔(𝑡) = 〈𝑎(0)𝑎(𝑡)〉 , (3.10)

which give the correlation between the values of a measured property at time 0, or the start
of the measurement, and time 𝑡. The VAF is given by

 𝐶(𝑡) = 〈𝒗௜(0) ∙ 𝒗௜(𝑡)〉 , (3.11)

where 𝒗௜ is the velocity of a tracked particle 𝑖. A typical VAF plot for fluids (Figure 3.3) is
calculated up to a certain value of 𝑡 = 𝑡௠௔௫, around which the correlation between a
particle’s initial and current velocities decays to zero.

Figure 3.3 A sample VAF plot, showing short-time bouncing and long-time decay.

The VAF is an important observable revealing information about the underlying dynamics
the particles in a simulation are subjected to and it has useful analytical properties. As
examples, the Fourier transform of VAF can reveal underlying frequencies of molecular
processes; and, through the Green-Kubo relations connecting correlation functions to
transport coefficients (Green, 1954; Kubo, 1957), the diffusion coefficient 𝐷 in a system of
dimensionality 𝑑 can be expressed as an integral over the VAF:

 𝐷 = 1𝑑 න 〈𝒗௜(0) ∙ 𝒗௜(𝑡)〉𝑑𝑡ஶ
଴ . (3.12)

Lyubartsev, Karttunen, Vattulainen, and Laaksonen (2003) have used the VAF in their DPD
coarse-graining study for adjusting the dissipative and stochastic forces, by trying to match
the form of the VAF between DPD and atomistic MD simulations. They have done this by
using a standard form for 𝜔(𝑟) and adjusting the dissipation parameter 𝛾 in their system,

26

which was defined by equations (2.8) to (2.11), so that the short-time decay of the VAF is
approximately the same in MD and DPD simulations (Figure 3.4).

Figure 3.4 Short time decay of the VAF for water, measured in an MD simulation (dashed curve) and
a DPD simulation (solid curve) that is tuned to match the MD simulation. Reproduced based on

(Lyubartsev, Karttunen, Vattulainen, & Laaksonen, 2003).

3.3.2 Force covariance

Eriksson, Jacobi, Nyström, and Tunstrøm (2008b) suggested the use of the covariance of the
forces (see equation (2.2)) acting on particles

 𝜅ி(𝑟) = −Δt 〈𝑭௜ ∙ 𝑭௝〉ห௥೔ೕ ୀ ௥ (3.13)

as an observable for estimating [𝜔(𝑟)]ଶ, where Δt is the time step used in the integration of
the equations of motion (2.1) and 𝑟௜௝ is the distance between particles 𝑖 and 𝑗. Measuring the
force covariance 𝜅ி in DPD simulations with various forms of 𝜔(𝑟) and trying to recreate
these by 𝜅ி, they report that for time steps sufficiently small (smaller than usual for DPD
simulations, close to Δt = 10ିଷ in reduced units), but larger than the microscopic time scales
that are represented as white noise after the DPD coarse-graining, 𝜅ி works as a remarkably
good estimator for [𝜔(𝑟)]ଶ.

For cases where larger time steps are used, the measured 𝜅ி does not do well for
approximating [𝜔(𝑟)]ଶ. In this situation, Eriksson et al. suggest making two measurements
using different time steps Δ𝑡ଵ and Δ𝑡ଶ, which lie within a region where 𝜅ி is an
approximately linear function of Δ𝑡, and using a Richardson extrapolation for [𝜔(𝑟)]ଶ at the
limit of Δ𝑡 → 0:

 [𝜔(𝑟)]ଶ|୼௧ ୀ ଴ ≅ Δ𝑡ଵΔ𝑡ଶΔ𝑡ଶ − Δ𝑡ଵ ቂ 〈𝑭௜ ∙ 𝑭௝〉ห୼௧మ − 〈𝑭௜ ∙ 𝑭௝〉ห୼௧భቃ , (3.14)

27

which approximates the known exact form of [𝜔(𝑟)]ଶ in their controlled experiment with an
accuracy significantly better than either of the 𝜅ி measurements with Δ𝑡ଵ and Δ𝑡ଶ (Figure
3.5). It is also recommended that the linear region used in this extrapolation should not
extend far beyond Δ𝑡 = 0.05 in reduced units.

Figure 3.5 Force covariance measurements in a DPD simulation, resulting from ∆𝑡 = 0.025 (dashed
curve) and ∆𝑡 = 0.05 (dotted curve). Richardson extrapolation (dot-dashed curve) from these two
measurements matches the exact form of [𝜔(𝑟)]ଶ = [3(1 − 𝑟)]ଶ (solid curve) closely. Reproduced

from (Eriksson, Jacobi, Nyström, & Tunstrøm, 2008b).

3.3.3 Other techniques

The conventional method of adjusting the dissipative and stochastic forces has been to use a
generic arbitrary form for 𝜔(𝑟)—more than often the form in equation (2.13), justified as "a
simple choice" (Hoogerbrugge & Koelman, 1992; Groot & Warren, 1997)—and then scaling it
by trial and error to match some transport property that is deemed important for the
particular type of study at hand, measured in a real-world experiment or an atomistic MD
simulation.

Finding a generally applicable and proven procedure (like the IMC for the reconstruction of
effective conservative potentials) for the determination of dissipative and stochastic part of
dynamics in the DPD model is an active area of current research. In Chapter 4, we will
examine the feasibility of using generic, black-box type optimization algorithms for the
derivation of 𝐹஼(𝑟) and 𝜔(𝑟), using genetic algorithms as a case study.

28

4 DPD Coarse-Graining through
Evolutionary Computation

This chapter starts with a brief introduction of evolutionary computation techniques,
continuing with a description of the most commonly used member in this family, genetic
algorithms. This optimization technique is used for the determination of coarse-grained
interactions in the DPD model, based on fitness measures comparing equilibrium and
transport properties of the system with those measured in atomistic simulations. As the
model system, the simple point charge water model is used, for making the results comparable
with selected literature. The technique is first used for the determination of conservative
interactions from the RDF with the purpose of validating the approach by results from the
IMC technique; and after that the dissipative interactions, based on escape time distributions.
Through this case study, we will also gain information about the feasibility and performance
of using generic optimization techniques in this domain.

4.1 Evolutionary computation
Evolutionary computation is a generic name given to the category of optimization
algorithms based on Darwinian evolution, the process of gradual and hereditary changes of
biological organisms over long periods of time, directed by natural selection in the
environment which they live in. The algorithms grouped under this category emulate the
process of biological evolution with different levels of fidelity, but all work by following the
non-random survival of randomly changing solution candidates, based on a fitness (or
alternatively, error) measure modeling natural selection. Evolutionary computation is also
commonly identified as a subfield of artificial intelligence, as it allows machines to
spontaneously devise solutions to problems, without human intervention.

Although there were computer simulations of evolution as early as 1954, the idea of applying
evolutionary principles in computational models for problem solving matured in the
following decades, most notably by the introduction of three independently developed
techniques, namely, evolutionary programming (EP) (Fogel, 1964; Fogel, Owens, & Walsh,
1966), evolution strategies (ES) (Rechenberg, 1971; Schwefel, 1975), and genetic algorithms
(GA) (Holland, 1975). The common feature of these techniques is that they work on a
population of solution candidates that improve gradually with each passing generation,
through a cycle of reproduction, modification, and selection.

The techniques of EP, ES, and GA, with many other variants thereof, are now classified as
different members under the unified category of evolutionary algorithms (EA). The latest
addition to the field is genetic programming (GP) (Koza, 1992), in which program trees—
instead of simple data structures as in the case of GA—are subject to evolution, with genetic
operators like mutation and crossover adapted to work on sub-branches of program trees
and others like encapsulation and module acquisition added.

Within the general framework of optimization algorithms, the EA technique is classified as a
type of metaheuristic combinatorial optimization that does not make any assumptions about

29

the error landscape underlying a particular problem—working as long as a fitness measure
can be defined—and has thus been successfully applied in almost every subfield of
engineering, natural sciences, and social sciences. The EA approach is particularly preferred
because of its ability to provide fairly optimal solutions when there are no satisfactory
problem-specific algorithms developed for a problem. These properties make it an
interesting case study for the determination of interactions in the DPD model, with the
possibility of using complex fitness functions measuring the equivalence of the coarse-
grained model with the microscopic basis, incorporating equilibrium and time-dependent
observables.

4.1.1 Genetic algorithms (GA)

A particularly common variety of evolutionary algorithms is genetic algorithms (GA)
(Holland, 1975). As introduced in the previous section, descriptions of EA techniques employ
basic concepts from evolutionary biology, such as population, fitness, selection,
reproduction, and mutation. The flow of the standard GA, i.e. a version working on strings
representing chromosomes and containing only the most basic genetic operations of
mutation and simple crossover, proceeds as follows:

• Initialize the population, by creating a given number 𝑛௣௢௣ of individuals (solution
candidates) with randomly generated chromosomes (strings) of a given length 𝑙௖

• Evaluate the current population by assigning fitness values to all individuals using
the problem-specific fitness measure, while keeping track of the highest fitness

• Form a new generation by doing the following until 𝑛௣௢௣ new individuals are created

o Based on the probability of crossover (sexual reproduction) 𝑝௖, do one of the
following

 Sexual reproduction: Select two individuals (with individuals with
higher fitness having a higher probability of getting selected) and
apply the crossover operator simulating sexual reproduction (Figure
4.1), producing two new individuals as offspring

 Asexual reproduction (or cloning): Select an individual (with
individuals with higher fitness having a higher probability of getting
selected) and produce its copy as a new individual

o Mutation: Apply the mutation operator (Figure 4.1) to the newly created
individual (or individuals) with probability of mutation 𝑝௠

• Replace the population with newly created individuals, optionally keeping the
individual with the highest fitness (a practice called elitism)

• Repeat from step two, until a given fitness threshold is reached by the individual
with the highest fitness, or another end criterion is satisfied

30

Figure 4.1 Mutation and crossover genetic operators in standard GA.

The GA workflow described above forms a generic framework that is applicable to a vast
variety of optimization problems. The steps in preparing to apply it for the solution of a
particular problem involve the definition of a problem-specific fitness measure and the
decision of an encoding scheme through which the chromosomes (genotype) will be mapped
to individuals to be evaluated (phenotype). The fitness measure is an algorithm used for
assessing the performance of individuals in the environment, and can range from an
evaluation of a simple mathematical function to a very long run of a highly complex
simulation. The encoding scheme can either employ a direct one-to-one encoding of some
parameters describing the individual, or a compact structure that will in turn create an
individual by a simulated process of development, through techniques called artificial
development or embryogenesis.

Another important consideration in designing a GA run is the selection procedure used for
picking individuals from the population for reproduction. Two techniques are particularly
common: The roulette-wheel selection scheme works by assigning each individual a slice of an
imaginary selection wheel with a width directly proportional to its fitness value (the whole
wheel representing the total of fitness of all individuals) and selecting a random angular
position on the wheel. The tournament selection scheme involves, for each selection, the
creation of a tournament group of size 𝑛௧ picked randomly from the population, arranging
one-to-one contests in which the individual with the lower fitness is eliminated with
probability 𝑝௧ (usually > 0.75), and designating the last standing individual as selected,
loosely simulating real world population dynamics. The evolutionary parameters affecting
the performance and convergence of the GA process, such as the population size, selection
method, mutation rate 𝑝௠, and crossover rate 𝑝௖, are usually determined through simple
heuristics and experience with former GA runs on similar classes of problems.

The most important advantages of GA—and EA in general—over classical optimization
techniques like gradient descent, of which the IMC technique described in Section 3.2.1 for
the determination of conservative potentials from RDFs is an instance, are that GA does not
require the error function to be differentiable (see equations (3.8) and (3.9) of the IMC
procedure) and that it is not bound to a deterministic trajectory over the error gradient and
thus can escape local minima. In view of realization, the GA technique is particularly easy to
implement and straightforward to parallelize.

31

4.2 Model experiment
In the following parts of this chapter, we will apply the GA technique for the derivation of
coarse-grained conservative and stochastic interactions in a DPD simulation of simple point
charge (SPC) water, with the aim of producing results comparable with the recent study by
Eriksson, Jacobi, Nyström, and Tunstrøm (2008a), in which the transport properties in a
united atoms (UA)6 DPD simulation of SPC water were investigated.

The SPC water model, introduced by Berendsen, Postma, Van Gunsteren, and Hermans
(1981), is a member in the large family (of more than 40) molecular models developed for
simulations of the water molecule with varying degrees of detail and accuracy (Guillot,
2002). In the SPC model, water molecules (H2O) are represented by three point charges
corresponding to the one oxygen and two hydrogen atoms, interacting under Coulomb
potential acting between all point charges and a Lennard-Jones potential (equation (1.5))
acting only between oxygen positions. The simplification of nuclei and electron orbits to
point charges leads to an incorrect value for the dipole moment of the molecule, which is to
some extent corrected by adjusting the H-O-H bond angle to 109.47° instead of its real value 104.45° known from experiments (Figure 4.2). The assumption of point charges also causes
the SPC molecules to move somewhat faster than real water molecules (compare the
diffusion rates in Table 4.1), but this effect decreases with increasing temperature. The model
is rigid and the O-H bond lengths are exactly 1 Å.

a)

b)

Figure 4.2 a) Real water molecule. b) SPC water model, with Lennard-Jones parameters
 𝜎 = 3.166 Å and 𝜀 = 0.650 kJ mol ିଵ.

A brief comparison of the properties of real water and SPC water are given in Table 4.1. The
mass of one water molecule, 2.992 × 10ିଶ଺ kg, has been used as the base mass unit for
reduced units (see Section 2.3) while performing DPD simulations. As in Eriksson et al., the

6 The name “united atoms” denotes the practice of representing functional groups of bonded atoms within a
molecule (or, for simple molecules like water, the whole molecule) with one pseudo-atom. This may be regarded
as the first level of coarse-graining in super-atomic scale; on further levels, clusters of molecules may be
represented by single pseudo-particles.

32

simulations have been performed at 298 K (24.85 °C), giving 𝑘஻𝑇 ≅ 1.381 × 10ିଶଷ × 298 =4.115 × 10ିଶଵ J, which was used as the base unit for energy. The length scale was defined in
terms of 4.65 × 10ିଵ଴ m (4.65 Å), the approximate position of the potential well in the
coarse-grained potential found by using the IMC method for UA SPC model (Figure 4.13).

Table 4.1 Physical and thermodynamic properties of real and SPC water(Chaplin, 2008). All given
values are at 25 °C (298.15 K) and 1 atm (101.325 kPa), except noted otherwise.

Property Real water SPC water

Dipole moment (10ିଷ଴ C m) 9.84 (at 27 °C) 7.57

Relative static permittivity 78.4 65

Self diffusion (10ିହ cm ଶ s ିଵ) 2.30 3.85

Average configurational energy
(kJ mol ିଵ)

−41.5 −41

Density maximum (°C) 3.984 −45

Expansion coefficient (10ିସ °C ିଵ) 2.53 7.3 (at 27 °C)

4.3 GA and DPD
The GA optimization technique is applicable for the determination of both the conservative
and the dissipative part of interactions in a DPD simulation, while the ease of doing
multiobjective optimizations with the GA technique, i.e. defining fitness functions involving
more than one property of the coarse-grained system, allows one to incorporate both parts of
dynamics in one optimization procedure, in contrast to existing techniques that were
developed to apply specifically to either one of the two parts. Since there is the particularly
successful and theoretically well-founded IMC technique for the construction of conservative
potentials from the RDF, here we focus on the determination of the dissipative part of the
dynamics and investigate the feasibility of having relatively long DPD simulations as part of
fitness evaluations in a GA run and the success of the produced results compared to existing
techniques.

Even if we focus on the dissipative part of the dynamics, we start by testing the GA approach
on conservative interactions, providing an opportunity to test factors such as the selected
encoding scheme, fitness evaluation algorithm, and evolutionary parameters, by validating
the final result (the coarse-grained conservative potential) against the trusted one from the
IMC technique, before going on to the determination of the dissipative interactions.

4.3.1 Representation of solutions

33

In order to apply the GA technique in this context, one of the first things that need to be
defined is the template form for the functions to be optimized and the manner in which this
will be encoded as a chromosome string.

A simple possibility is to use a parameterized simple function, such as equation (2.13) for 𝜔(𝑟), effectively handing over the parameter-tuning approach dominant in the DPD
literature to the GA optimization. However, the versatility of the GA technique allows one to
use much more complex and open-ended function templates; in fact, almost all models for
curve fitting and regression analysis subfield of statistics can be employed for standing for
solution candidates, including combinations of linear or nonlinear functions, polynomials,
Fourier and power series, and splines. The main difference between curve fitting and this
approach is that in curve fitting, the parameters of a chosen curve template are optimized so
that an error measuring the proximity of the curve to a given set of data points is minimized,
whereas in our study, there are no data points and the error is provided by the results of a
DPD simulation using the curve (𝜔(𝑟) or 𝐹஼(𝑟)) as an input.

A very common choice in GA curve fitting studies is to use a 𝑛-degree polynomial

 𝑝(𝑥) = 𝑎଴ + 𝑎ଵ𝑥 + 𝑎ଶ𝑥ଶ + 𝑎ଷ𝑥ଷ + ⋯ + 𝑎௡𝑥௡ (4.1)

as the function template, and use a direct encoding for representing the coefficients 𝑎଴, … , 𝑎௡
as real numbers in the chromosome. Through the use of variable length chromosomes, the
decision of the required degree of polynomial can also be left to the GA optimization
procedure. This approach is relatively successful in a curve fitting task, where a smooth low-
degree polynomial (usually 𝑛 < 10), not passing through all of the data points but having
sufficient proximity to most of these, is often considered adequate. However, this technique
suffers from a problem known as Runge’s phenomenon (Figure 4.3 (a)), where violent
oscillations in the function can appear, which can change the function being optimized
radically even with very small changes in the GA genome. This was found to have adverse
effects especially for the initial part of GA runs, i.e. the determination of conservative
interactions from the RDF. A similar problem is also present in Fourier series, where it is
called the Gibbs phenomenon (Figure 4.3 (b)).

a)

b)

Figure 4.3 a) Runge’s phenomenon in a curve fitting example. A 10th degree polynomial (solid curve)
is fitted to the 10 sample points on the function ଵଵାଶହ௫మ (dashed curve). b) Gibbs phenomenon. The plot

of the 5th degree Fourier series ∑ ଵଶ௜ିଵ 𝑠𝑖𝑛[(2𝑖 − 1)𝑥]ହ௜ୀଵ approximating a square wave.

34

In light of these considerations and GA test runs with other alternatives, it was decided to
use a simple one-dimensional random walk as the function template. In contrast with a
classical random walk taking successive random steps (relative to the previous step) that are
accumulated as the walk progresses, we simply use a sequence of random numbers {𝑥ఈ}
representing the values of the function being optimized (𝐹஼(𝑟) or 𝜔(𝑟)) at the set of discrete 𝑟 values {𝑟ఈ} (compare with equation (3.6)). This has the advantage of providing the
optimization process with the ability of making local changes independent from the rest of
the curve (via mutations) and merging parts of two existing curves into one simply by
concatenating the parts together (via crossovers).

An intrinsic property of this simple random walk model is that it generates non-smooth
functions consisting of piecewise linear sectors. However, the smoothness of 𝐹஼(𝑟) and 𝜔(𝑟)
is especially important for the stability of the DPD algorithm with large time steps. One
possibility for imposing the smoothness of the produced random walks is to include a
measure of smoothness in the fitness measure, which would cause the GA procedure to
eliminate random walks with highly non-smooth forms. Another one, as used in this study,
is to apply some form of smoothing to the sequence {𝑥ఈ}. For obtaining smooth functional
forms while still allowing relatively detailed local structure, we use Bézier splines7 (Figure
4.4) fitted to the random walk, using the first and last points of the random walk as spline
endpoints and the points in-between as control points. We call this approach for modeling
arbitrary functions as spline random walk (Figure 4.5).

Figure 4.4 A Bézier spline.

The sequences {𝑥ఈ} were encoded as real numbered chromosomes and in the first generation
of the GA runs, initialized with uniform random numbers within a set range (𝑥௠௜௡ , 𝑥௠௔௫). A
one-point crossover operator as shown in Figure 4.1 was employed. The standard mutation
operator would change each position in a chromosome, with a given probability 𝑝௠, with a
new random number in the range (𝑥௠௜௡ , 𝑥௠௔௫), causing abrupt changes in the form of the
optimized function. After a number of trials, a special mutation operator was found to
succeed considerably better, which scales the existing value at each mutated position by
multiplication with a random number in the range (1/2 , 2). This allows mutations to
produce gradual changes in sections of the function, facilitating the improvement of already
good solutions.

7 A Bézier spline is essentially a piecewise polynomial curve, whose shape is controlled by a given set of points. It
is named after the French engineer Pierre Bézier, who publicized the method in 1960s for automobile design.

35

Figure 4.5 Spline random walk with a Bézier spline (solid curve) fitted to a random walk of 60 points
(points connected by dashed lines).

4.3.2 Choice of fitness measures

For the first part of the GA runs determining the conservative interactions, i.e. optimizing 𝐹஼(𝑟), the difference between a given target RDF measured in atomistic SPC water
simulation and the RDF produced at the end of a DPD simulation with the evaluated form
of 𝐹஼(𝑟) has been used as the error measure, with lower errors translating to higher fitness
values in the GA procedure. For the calculation of the error, the 𝐿ଶ-norm (also known as the
Euclidean norm) has been used, which is given by

 ඩ ෍ൣ𝑔(𝑟ఈ) − 𝑔௧௔௥௚௘௧(𝑟ఈ)൧ଶெ
ఈୀଵ , (4.2)

where 𝑔(𝑟) is the RDF resulting from the evaluated 𝐹஼(𝑟), 𝑔௧௔௥௚௘௧(𝑟) is the target RDF, 𝑟ఈ is
the discretized distance, with 𝛼 as the discretization index and 𝑀 as the discretization
resolution (similar to the IMC procedure, equation (3.6)). The DPD simulations for the
evolution of 𝐹஼(𝑟) were performed with the dissipative and stochastic interactions
determined by a generic 𝜔(𝑟) supplied beforehand, bearing in mind that the form of the
thermostat will not have an effect on the RDF values averaged at equilibrium.

For the second part, where the dissipative and stochastic interactions are determined
through optimizing 𝜔(𝑟), the escape time distribution (ETD) was adopted as the observable,
illustrating the probability of two particles getting separated by more than a given distance,
depending on the passed time and their initial separation (Figure 4.6). Thus, an ETD plot
gives a very detailed view of local dynamics, compared with simple scalar measures of time
dependent properties, such as the diffusion coefficient and viscosity. Again, the Euclidean
norm was used for computing the error between the ETD measured during fitness
evaluations and the target ETD measured in the atomistic SPC water simulation. With a
given discretization resolution 𝑀, the two-dimensional ETD plot was treated as a probability
matrix and the error was defined as a 𝐿ଶ-norm running over all the elements of the two
matrices:

36

 ඩ ෍ ෍ ቂ𝑬 ௜,௝ − 𝑬 ௧௔௥௚௘௧௜,௝ቃଶெ
௝ୀଵ

ெ
௜ୀଵ . (4.3)

For this part, in DPD simulations for the evaluation of fitness values by measuring the ETD
resulting from a tested 𝜔(𝑟), the conservative force 𝐹஼(𝑟) found by the GA procedure in the
previous part, or by the IMC procedure, has been used to set the conservative part of
dynamics.

Figure 4.6 Escape time distribution in a DPD simulation with 2744 particles. The plot gives the
probability of two particles remaining within a distance of 1.075, given their initial separation 𝑟 and

the passed time 𝑡.

4.3.3 Fitness evaluations

During the GA runs, the fitness evaluation of a given chromosome (step two within the
general GA procedure described in Section 4.1.1) consisted of the following main steps:

• Decode the chromosome, getting the random walk sequence {𝑥ఈ} smoothed with a
Bezier spline fit as described in Section 4.3.1

• Set up a DPD simulation

o For evaluations of conservative force: Use {𝑥ఈ} as 𝐹஼(𝑟), with a given 𝜔(𝑟)

o For evaluations of dissipative and stochastic forces: Use {𝑥ఈ} as 𝜔(𝑟), with a
given 𝐹஼(𝑟)

• Equilibrate the DPD simulation for a given number of initialization time steps

• Take the measurements

o For evaluations of conservative force: Sample RDF

o For evaluations of dissipative and stochastic forces: Sample ETD

• Compute the error between measured and target observables, through equations (4.2)
and (4.3)

37

For obtaining speedups in the optimization procedure, a fail condition for every fitness
evaluation was introduced, checking the stability of the DPD algorithm with the tested
functional form. This was achieved by checking the value of 𝑘஻𝑇 (which should be close to 1
in reduced units, see Section 2.3) after the end of equilibration of DPD simulations, through
the equipartition theorem

 ෍ 𝑚௜𝑣௜ଶே
௜ୀଵ = 3𝑁𝑘஻𝑇 , (4.4)

where 𝑁 is the number of particles, 𝑚௜ is the mass (equal to 1 in a one-component system
with reduced units) and 𝑣௜ the speed of particle 𝑖. For individuals with 𝑘஻𝑇 differing
significantly from unity, the fitness evaluations were preemptively ended with a predefined
worst fitness value. This was especially useful during the first few generations, where the
tested functional forms are essentially random and do not necessarily conform to the stability
requirements of the DPD procedure. With the help of this stability condition and the fitness
measure assessing the physical plausibility of the system with RDF and ETD comparisons,
virtually all individuals in later generations represent functional forms that are theoretically
acceptable as the final result.

Because of the limited system size (i.e. number of particles) used in the simulations, single
instances of RDF and ETD measurements are subject to noise. This was overcome by using
the average of several samples as the final measurement. The total number of averaging
steps for each observable were determined based on experiments with a typical DPD
simulation with 2744 particles, observing the convergence of the averaged RDF and ETD
into a smooth form, and also keeping in mind performance considerations (i.e. a longer than
necessary number of averaging steps incurs a significant burden on the time needed for one
GA evaluation). For the measurement of RDF 45 samples, and for ETD, 12 samples were
used (Figure 4.7).

It should also be noted that the number of samples needed for averaging out the noise to a
sufficient degree decreases in simulations with higher particle numbers. However, using
higher number of particles demands more computation time per DPD simulation step, and
this can easily surpass any gains by using less sampling steps. The optimum number of
particles and the number of averaging steps should thus be determined by striking a balance
between these two considerations.

38

a)

b)

Figure 4.7 a) The RDF averaged in a DPD simulation with 1000 particles. Averages of 5, 15, 30, and 45 samples, with 50 time step intervals between each sample. b) ETD averaged in the same
simulation, with 2, 4, 8, and 12 samples, shown as a density plot to better illustrate the effect of

averaging.

All DPD simulations for fitness evaluations were started with an initial configuration of
particles in a simple cubic lattice. The simulations were performed in cubic boxes and the

39

number of particles were selected to be perfect cubes (e.g. 1, 8, 27, … , 2744, 3375, 4096, … , 𝑛ଷ), for having the same inter-particle distance in each
Cartesian direction. As periodic boundary conditions (described in Section 1.2.1) were used,
the minimum and maximum coordinates of the simulation box on each axis correspond to
the same coordinates, thus, the initial lattice within the box is scaled so that particle overlaps
are avoided and the system represents a perfect infinite cubic lattice filling all space (Figure
4.8).

Figure 4.8 Initial configuration with 125 particles, box side length 3.368, number density 3.271.

4.4 Implementation
The core simulation components were coded in C# programming language (version 3.0),
with the compiled assemblies running on Microsoft .NET Framework 3.5 on Microsoft
Windows operating system. Some mathematical operations needed by the code, such as the
solution of a system of linear equations for the IMC procedure (Section 3.2.1) and the
computation of Bezier splines (Section 4.3.1), along with some parts of the user interface
(Figure 4.9) such as function plots, were coded in the high-level Mathematica programming
language. Communication between these two code bases were established using the
.NET/Link protocol provided with the Mathematica 6.0 kernel by Wolfram Research.

In addition to the GA implementation (Figure 4.9) working as a standalone program
accessing the Mathematica kernel for some operations, special Mathematica interfaces for the
C# engine for setting up and running DPD simulations (Figure 4.10) and IMC optimizations
(Figure 4.11) were also developed, allowing observation of the progress on the fly as the run
proceeds.

The simulation components were implemented in a modular fashion, allowing different
combinations of the subparts and future extensions with ease. The time integration engine
was implemented as an abstract class employing the velocity Verlet algorithm (see equations
(1.7)), which was then inherited by classes implementing MD and DPD models. A separate
class was written for the Metropolis MC algorithm. The C# code uses three-dimensional

40

vector s
in equa
fashion
implem

The com
AMD A
DPD ru
seconds

The sou

structures a
ations. The

to that de
mented as an

mputer exp
Athlon 64 32
un with 27
s.

urce code of

Figure 4

allowing the
Verlet nei

escribed in
n 𝑁 × 𝑁 adja

periments w
200+ proces744 particl

f implement

4.9 Screensh

e coding of
ghbor list

n (Chialvo
acency matr

were condu
ssor and 1.2
les for 100
tations are g

hot of the GA

vector ope
optimizatio
& Debene

rix with bin

ucted on a
25 GiB rand00 simulati

given in Ap

A implementa

erations ver
on (Section
detti, 1992)

nary entries

64-bit hard
dom access
on time st

ppendix B.

ation evolvin

ry similar to
1.2.1) was

) and in c
.

dware platf
s memory. O
teps took a

ng DPD inter

o how these
s used in a
code this h

form (x86-6
On this pla
approximat

ractions.

e appear
a similar
has been

64) with
atform, a
tely 130

Figgure 4.10 Th

Figure 4

he DPD simu

4.11 The IMC

ulation interf

C interface co

rface coded in

oded in Math

n Mathemati

hematica.

ica.

41

42

4.5 Results

4.5.1 Simulation setup

The parameters of the DPD simulations within GA evaluations are selected as to make the
final results comparable with those by Eriksson, Jacobi, Nyström, and Tunstrøm (2008a). The
simulations were performed, as described in Section 4.2, in reduced units. The simulation
box length has been selected so that a number density of 3.275 (corresponding to 974.472 kg
m ିଷ in physical units) is achieved with 2744 particles, to match the density of simulations
by Eriksson et al. This value of is close to the density of real water at 14 °C (287.15 K) under 1 atm pressure. Table 4.2 gives a list of DPD parameters that were common in all performed
simulations.

Table 4.2 DPD parameters common in simulations. Properties in parentheses are derived from others.

Property Value
 (reduced units)

Value
(physical units) 𝑁, number of particles 2744 𝐿, simulation box side length 9.427 4.384 nm

(𝜌ே, number density) 3.275 32.57 nm ିଷ

(𝜌, density) 974.472 kg m ିଷ 𝑇, Temperature 1 298 K ∆𝑡, time step 0.01 0.0125 ps

Equilibration time 3.5 4.388 ps 𝑟଴, minimum distance 0.596 0.277 nm 𝑟௖, cutoff distance 1.72 0.8 nm 𝑟௡, neighbor search 2.191 1.019 nm

The GA parameters used in simulations are summarized in Table 4.3. Note that the gene
minimum and maximum values only determine the lower and upper bounds of the random
functions created to form the first generation, and functions can attain values outside this
range through the scaling mutation procedure described in Section 4.3.1. The genome length 𝑙௖ determines the number of points in the spline random walks (i.e. tested functions) and also
the sampling resolution of DPD measurements like the RDF and ETD (in both dimensions).

43

Table 4.3 The GA parameters used in simulations.

Property Value 𝑛௣௢௣, population size 250 𝑙௖, genome length 100

Gene minimum 0

Gene maximum 6.5 𝑝௖, crossover probability 0.91 𝑝௠, mutation probability 0.1 𝑛௧, tournament size 8 𝑝௧, tournament probability 0.75

Elitism Employed

4.5.2 Comparison with existing techniques

4.5.2.1 Equilibrium properties

We start testing the practicality of the GA approach by trying to replicate the radial
distribution function (RDF) measured in a MD simulation with SPC water, as described in
Section 4.2. This is actually performed as a test for the success of the chosen fitness function
and solution template (i.e. spline random walk) by validation of the results against the
already established IMC technique (Section 3.2.1).

The DPD model used in fitness evaluations was formed by equations (2.1) – (2.3) and (2.12),
with the form of dissipative and stochastic interactions given by

 𝜔(𝑟) = ൞0 if 0 < 𝑟 ≤ 𝑟଴𝜎 ൬1 − 𝑟𝑟௖൰ if 𝑟଴ < 𝑟 ≤ 𝑟௖0 if 𝑟 > 𝑟௖ , (4.5)

where 𝑟଴ is a minimum threshold below which the dissipative and stochastic forces are zero, 𝑟௖ is the cutoff distance, and 𝜎 determines the strength of stochastic interactions as usual.
The parameter 𝑟଴, introduced by Eriksson et al. (2008a), acts as a restraint preventing the
stochastic force from pushing particles within the region where the expected pair potential is
practically infinity (as in Figure 3.2), or equally, the target RDF is zero (Figure 4.12). The
value of 𝜎 was taken as 2.589 in reduced units, corresponding to 4 × 10ି଻ kg ଵ/ଶ s ିଵ/ଶ in
physical units. The GA evaluations were based on a fitness function measuring the 𝐿ଶ-norm
of the difference of the target RDF measured with SPC water and the RDF produced by the

44

evaluated system (Section 4.3.2). The RDF measurements were performed up to a distance 𝑟 = 2.150 (1 nm). The actual function optimized by the GA procedure was the pair potential Φ(𝑟), from which the conservative pair force 𝐹஼(𝑟) was derived by numerical differentiation
to be used in DPD simulations.

Figure 4.12 shows the comparison of the target RDF with the RDF resulting from a pair
potential Φ(𝑟) found as the best result in a GA run after 21 generations of evolution (with
the parameters outlined in Section 4.5.1). In Figure 4.13, this pair potential and its
comparison with the result from the IMC procedure are presented.

Figure 4.12 The target RDF measured in MD simulation of SPC water (dashed curve) and the RDF
measured in a DPD simulation with the conservative interactions given by a solution selected from

the GA procedure (solid curve).

Figure 4.13 Conservative pair potentials found by the GA procedure (solid curve) and the IMC
procedure (dashed curve), using the RDF measured in MD simulation of SPC water.

Sufficient agreement between the results from the GA and IMC procedures, and the fact that
the results from the GA procedure would most probably keep improving in longer runs,
suggest that the GA technique is applicable in this domain, with the chosen representation

45

and fitness measures. It is particularly of note that the technique was able to recreate most of
the major features of the potential known from the IMC procedure, and it is highly likely that
the form can be matched almost exactly in a longer GA run, since the form in Figure 4.13 is
readily transformable to the one from the IMC procedure by a few local scaling mutations.

The most significant drawback of the method is the long computational time required to
perform the fitness evaluations, lasting about 20 minutes per generation on the hardware
configuration described in Section 4.4. This computational cost is clearly intolerable and
unnecessary for the determination of conservative interactions from RDF, for which there is
already the specialized IMC technique. Nevertheless, the cost is actually not prohibiting for
using the technique to fill in parts of the adjustment process of DPD models, and other
computational physics models in general, for which there currently are no standard
procedures.

4.5.2.2 Transport properties

The GA procedure was then applied for the determination of 𝜔(𝑟) controlling the form of
dissipative and stochastic interactions in the DPD model, using the escape time distribution
(ETD) measured in MD simulation of SPC water as the target property (Section 4.3.2). The
ETD measurements were performed for particles with initial separations in the range [0.537, 1.075] ([0.25 nm, 0.5 nm]) and for a time range of 1.595 (2 ps). The conservative
interactions in DPD simulations were defined by the function Φ(𝑟) determined by the IMC
procedure (Figure 4.13).

The ETD produced by the best solution in a GA run with 26 generations is presented in
Figure 4.14, together with the original measurement in SPC water and the one reported by
Eriksson et al. (2008a) for their UA DPD simulation. Figure 4.15 gives the form of ω(𝑟)
defined by this selected solution by GA, and a comparison of this with the result reported by
Eriksson et al. (producing the ETD in Figure 4.14 (b)), which was equation (4.5) with
parameter 𝜎 hand-tuned to match the diffusion rate and viscosity of the original SPC
simulation.

46

 a)

b)

c)

Figure 4.14 ETD measurements for a) MD simulation of SPC water, b) UA DPD simulation of water
by Eriksson et al. (2008a), and c) DPD simulation with the best 𝜔(𝑟) found by GA simulations.

47

Figure 4.15 Comparison of the form of 𝜔(𝑟) found by GA simulations (solid curve) with equation
(4.5), used by Eriksson et al. (2008a), with 𝜎 = 2.589, 𝑟଴ = 0.596, and 𝑟௖ = 1.72 in reduced units

(𝜎 = 4 × 10ି଻ kg ଵ/ଶ s ିଵ/ଶ, 𝑟଴ = 0.277 nm, and 𝑟௖ = 0.80 nm) (dashed curve).

In approximating the reference MD simulation of SPC water, the ETD measurement
resulting from the ω(𝑟) found by the GA approach performs considerably better than using
the generic linear form of ω(𝑟) (equation (4.5)) with hand-tuned parameter 𝜎. In Figure 4.14,
it is particularly notable that the falling edge of the peak near 𝑟 = 0.25 nm is reproduced by
the GA approach, whereas this feature does not appear with equation (4.5). Unlike the
common linear form of ω(𝑟) normally used in DPD studies, the solution by the GA
procedure has a non-linear form and behaves asymptotically at both ends of its domain. It is
also notable that even if the used spline random walk template (Section 4.3.1) is capable of
producing functions with detailed local structure (as with the conservative pair potential Φ(𝑟) shown in Figure 4.13), and despite that such detailed candidates have been observed
during the fitness evaluations, the final form of ω(𝑟) eventually settled by the GA procedure
has a very smooth form.

48

5 Conclusions
This study was a review of the DPD model and an investigation of the feasibility of using
evolutionary optimization techniques for the determination of coarse-grained interactions
from measurements in atomistic simulations. The review part included a very brief
introduction to particle physics to set the stage for discussing the different levels on the
coarse-graining ladder and the considerations that led to the development of the DPD model.
After introducing basic methods in computational physics, such as MD and MC, the DPD
technique was presented, including an account of its development and its application areas.
We have also presented existing major techniques for coarse-graining into DPD.

Preliminary tests with SPC water showed that, for the determination of conservative
interactions in DPD, GA simulations can replicate the results from the IMC technique to a
sufficient degree, thus proving that the approach is credible; while the results for the
dissipative and stochastic part of dynamics seem promising by performing better than the
hand-tuning approach commonly used in literature. Overall, the performance of the GA
technique suggests that it can be added into the toolset of coarse-graining techniques.

Besides confirming the feasibility of having relatively long DPD simulations within fitness
evaluations of a GA procedure, this study also establishes a general framework for applying
evolutionary optimization techniques for the determination of functional forms in possibly
other models within the field of computational physics.

5.1 Further research
There are a number of directions that would be meaningful to explore as an extension to this
study. To begin with, it would be interesting to see how the GA optimization procedure
would perform with the addition of observables other than the RDF and ETD to the fitness
evaluations, such as the velocity autocorrelation (described in Section 3.3.1) or the force
covariance (described in Section 3.3.2). A particularly appealing experiment would be to
investigate whether it is possible to combine the separately performed optimizations of the
conservative and dissipative interactions into one complex fitness measure, including both
RDF and ETD, and possibly other observables.

Again concerning the GA procedure, one could possibly devise better encoding schemes
than the relatively ad hoc spline random walk; and it would also make sense to use
parameterized analytical templates for 𝐹஼(𝑟) and 𝜔(𝑟) for specific applications, where such
templates can be meaningfully defined from theory. Also, as is common with evolutionary
optimization applications, domain-specific genetic operators could improve the convergence
of the GA procedure, such as a crossover operator specialized for smoothly merging two
partial functions.

Another study could be to investigate the performance of other evolutionary optimization
techniques, most promisingly genetic programming (briefly mentioned in Section 4.1), which
inherently produces functional expressions composed from a set of simple analytical
functions. Obtaining function definitions for 𝐹஼(𝑟) or 𝜔(𝑟) would be much more useful as

49

generic results, in contrast with the discrete lists produced by the random walk GA and
techniques like the IMC.

Lastly, due to the versatility of the evolutionary optimization approach and the ease with
which fitness measures of arbitrary complexity can be formulated, it seems also promising to
extend this work to many-body potentials, as the derivation of specific optimization
techniques for these is analytically harder and most of the focus with existing techniques
(such as the IMC) is on two-body potentials.

50

References
Alder, B. J., & Wainwright, T. E. (1957). Phase transition for a hard sphere system. Journal of
Chemical Physics , 27, 1208.

Anderson, E. C. (1999, October 20). Lecture Notes for Stat 578C Statistical Genetics. Retrieved
September 6, 2008, from University of California, Berkeley; Department of Integrative
Biology: http://ib.berkeley.edu/labs/slatkin/eriq/classes/guest_lect/mc_lecture_notes.pdf

Barbier, E. (1860). Note sur le problème de l'aiguille et le jeu du joint couvert (In French).
Journal de Mathématiques Pures et Appliquées , 2 (5), 273-286.

Berendsen, H. J., Postma, J. P., Van Gunsteren, W. F., & Hermans, J. (1981). Interaction
models for water in relation to protein hydration. In B. Pullman (Ed.), Intermolecular Forces
(pp. 331-342). Dordrecht: D. Reidel Publishing.

Boek, E. S., Coveney, P. V., & Lekkerkerker, H. N. (1996). Computer simulation of rheological
phenomena in dense colloidal suspensions with dissipative particle dynamics. Journal of
Physics: Condensed Matter , 8, 9509-9512.

Carlsson, A. E. (1990). Beyond pair potentials in transition metals and semiconductors. In H.
Ehrenreich, & D. Turnbull (Eds.), Solid State Physics: Advances in Research and Applications
(Vol. 43, pp. 1-91). New York: Academic.

Ceicedo-Carvajal, C. E., & Shinbrot, T. (2008). In silico zebrafish pattern formation.
Developmental Biology , 315 (2), 397-403.

Chaplin, M. (2008). Water Models. Retrieved 9 5, 2008, from Water Structure and Science:
http://www.lsbu.ac.uk/water/models.html

Chen, S., Phan-Thien, N., Fan, X.-J., & Khoo, B. C. (2004). Dissipative particle dynamics
simulation of polymer drops in a periodic shear flow. Journal of Non-Newtonian Fluid
Mechanics , 118 (1), 65-81.

Chialvo, A. A., & Debenedetti, P. G. (1992). An automated Verlet neighbor list algorithm
with a multiple time-step approach for the simulation of large systems. Computer Physics
Communications , 70, 467-477.

Dodd, A., & Dempsey, C. (2008). Advanced Computing Research Centre Projects. Retrieved
September 2, 2008, from University of Bristol: http://www.acrc.bris.ac.uk/acrc/projects.htm

Dzwinel, W., & Yuen, D. A. (2000). Matching macroscopic properties of binary fluid to the
interactions of dissipative particle dynamics. Journal of Modern Physics C , 11 (1), 1-25.

Dzwinel, W., Boryczko, K., & Yuen, D. A. (2003). A discrete-particle model of blood
dynamics in capillary vessels. Journal of Colloid and Interface Science , 258 (1), 163-173.

Eriksson, A., Jacobi, M. N., Nyström, J., & Tunstrøm, K. (2008a). Effective thermostat induced
by coarse graining of simple point charge water. Journal of Chemical Physics , 129, 024106.

Eriksson, A., Jacobi, M. N., Nyström, J., & Tunstrøm, K. (2008b). Using force covariance to
derive effective stochastic interactions in dissipative particle dynamics. Physical Review E,
Statistical, Nonlinear, and Soft Matter Physics , 77, 016707.

51

Español, P. (1998). Fluid particle model. Physical Review E , 57 (3), 2930-2948.

Español, P. (1995). Hydrodynamics from dissipative particle dynamics. Physical Review E , 52
(2), 1734-1742.

Español, P., & Warren, P. (1995). Statistical mechanics of dissipative particle dynamics.
Europhysics Letters , 30 (4), 191-196.

Fellermann, H., Rasmussen, S., Ziock, H.-J., & Solé, R. V. (2007). Life cycle of a minimal
protocell: a dissipative particle dynamics study. Artificial Life , 319-345.

Fellermann, H., Rasmussen, S., Ziock, H.-J., & Solé, R. V. (2007). Life cycle of a minimal
protocell: A dissipative particle dynamics study. Artificial Life , 319-345.

Filipovic, N., Kojic, M., & Tsuda, A. (2006). Modeling of microcirculation and thrombosis by
Dissipative Particle Dynamics (DPD). Journal of Biomechanics , 39 (1), S624.

Fogel, L. J. (1964). On the Organization of Intellect (PhD Thesis). Los Angeles: University of
California, Los Angeles.

Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966). Artificial Intelligence through Simulated
Evolution. John Wiley.

Forrest, B. M., & Suter, U. W. (1995). Accelerated equilibration of polymer melts by time-
coarse-graining. Journal of Chemical Physics , 102 (18), 7256.

Freddolino, P. L., Arkhipov, A. S., Larson, S. B., McPherson, A., & Schulten, K. (2006).
Molecular dynamics simulations of the complete satellite tobacco mosaic virus. Structure , 14,
437-449.

Frisch, U., Hasslacher, B., & Pomeau, Y. (1986). Lattice-gas automata for the Navier-Stokes
equation. Physical Review Letters , 56 (14), 1505-1508.

Füchslin, R. M., Maeke, T., & McCaskill, J. S. (2007). Multipolar Reactive DPD: A Novel Tool
for Spatially Resolved Systems Biology (Submitted).

Füchslin, R., Fellermann, H., Eriksson, A., & Ziock, H.-J. (2007). Coarse-graining and scaling
in dissipative particle dynamics. Journal of Chemical Physics (Submitted) .

Gibson, J. B., Goland, A. N., Milgram, M., & Vineyard, G. H. (1960). Dynamics of radiation
damage. Physical Review , 120, 1229.

Giordano, N. J., & Nakanishi, H. (2006). Computational Physics. Upper Saddle River: Pearson
Prentice Hall.

Green, M. S. (1954). Markoff random processes and the statistical mechanics of time-
dependent phenomena. II. Irreversible processes in fluids. Journal of Chemical Physics , 22 (3),
398-413.

Groot, R. D. (2004). Applications of Dissipative Particle Dynamics. In M. Karttunen, I.
Vattulainen, & A. Lukkarinen (Eds.), Novel Methods in Soft Matter Simulations (p. 2272).
Springer-Verlag Berlin Heidelberg.

Groot, R. D., & Warren, P. B. (1997). Dissipative particle dynamics: Bridging the gap between
atomistic and mesoscopic simulation. Journal of Chemical Pysics , 107 (11), 4423-4435.

52

Guillot, B. (2002). A reappraisal of what we have learnt during three decades of computer
simulations on water. Journal of Molecular Liquids , 101 (1-3), 219-260.

Hadjiconstantinou, N. (2006). 22.00J/1.021J/2.030J/3.021J/10.333J/18.361J/HST.558J, Introduction
to Modeling and Simulation, Spring 2006; Lecture notes 31: MD Simulation of Fluids. Retrieved
June 11, 2008, from Massachusetts Institute of Technology: MIT OpenCourseWare:
http://ocw.mit.edu/OcwWeb/Nuclear-Engineering/22-00JSpring-
2006/LectureNotes/index.htm

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their
applications. Biometrika , 57 (1), 97-109.

Henderson, R. L. (1974). A uniqueness theorem for fluid pair correlation functions. Physics
Letters A , 49 (3), 197-198.

Heyes, D. M., Baxter, J., Tüzün, U., & Qin, R. S. (2004). Discrete-Element Method Simulations:
From Micro to Macro Scales. Philosophical Transactions: Mathematical, Physical and Engineering
Sciences , 362 (182), 1853-1865.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: University of
Michigan Press.

Hoogerbrugge, P. J., & Koelman, J. M. (1992). Simulating microscopic hydrodynamic
phenomena with dissipative particle dynamics. Europhysics Letters , 19 (3), 155-160.

Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical
Review A , 31 (3), 1695-1697.

Kim, J. M., & Phillips, R. J. (2004). Dissipative particle dynamics simulation of flow around
spheres and cylinders at finite Reynolds numbers. Chemical Engineering Science , 59 (20), 4155-
4168.

Koelman, J. M., & Hoogerbrugge, P. J. (1993). Dynamics simulations of hard-sphere
suspensions under steady shear. Europhysics letters , 21 (3), 363-368.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press.

Krauth, W. (2006). Statistical Mechanics: Algorithms and Computations. New York: Oxford
University Press.

Kubo, R. (1957). Statistical-mechanical theory of irreversible processes. I. General theory and
simple applications to magnetic and conduction problems. Journal of the Physical Society of
Japan , 12, 570-586.

Louis, A. A., Bolhuis, P. G., Hansen, J. P., & Meijer, E. J. (2000). Can polymer coils be
modeled as "soft colloids"? Physical Review Letters , 85 (12), 2522-2525.

Lyubartsev, A. P., & Laaksonen, A. (1995). Calculation of effective interaction potentials from
radial distribution functions: A reverse Monte Carlo approach. Physical review E, Statistical
physics, plasmas, fluids, and related interdisciplinary topics , 52, 3730-3737.

53

Lyubartsev, A. P., Karttunen, M., Vattulainen, I., & Laaksonen, A. (2003). On coarse-graining
by the inverse Monte Carlo method: Dissipative particle dynamics simulations made to a
precise tool in soft matter modelling. Soft Materials , 1 (1), 121-137.

Marx, D., & Hutter, J. (2000). Ab initio molecular dynamics: Theory and implementation. In J.
Grotendorst (Ed.), Modern Methods and Algorithms of Quantum Chemistry, NIC Series (Vol. 1,
pp. 301-449). Jülich: John von Neumann Institute for Computing.

Metropolis, N. (1987). The Beginning of the Monte Carlo Method. Los Alamos Science , 125-
130.

Metropolis, N., & Ulam, S. (1949). The Monte Carlo method. Journal of the American Statistical
Association , 44, 335-341.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953).
Equation of state calculations by fast computing machines. Journal of Chemical Physics , 21,
1087-1092.

Nakamura, H., & Tamura, Y. (2005). Phase diagram for self-assembly of amphiphilic
molecule C12E6 by dissipative particle dynamics simulation. Computer Physics
Communications , 169 (1-3), 139-143.

Nosé, S. (1984). A unified formulation of the constant temperature molecular dynamics
methods. Journal of Chemical Physics , 81 (1), 511.

PACE Consortium. (2007). Research Overview. Retrieved June 5, 2008, from Programmable
Artificial Cell Evolution (PACE): http://www.istpace.org

Protocell Assembly Project. (2004). Protocell Assembly (PAs). Retrieved July 12, 2008, from Los
Alamos National Laboratory: http://protocells.lanl.gov

Rahman, A. (1964). Correlations in the motion of atoms in liquid argon. Physical Review , 136,
405-411.

Rapaport, D. C. (2004). The Art of Molecular Dynamics Simulation (2nd ed.). Cambridge:
Cambridge University Press.

Rasmussen, S., Bedau, M. A., Chen, L., Deamer, D., Krakauer, D. C., Packard, N. H., et al.
(2008). Protocells: Bridging Nonliving and Living Matter. Cambridge: MIT Press.

Rechenberg, I. (1971). Evolutionsstrategie - Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution (PhD thesis, in German). Berlin: Technical University of Berlin.

Schlijper, A. G., Hoogerbrugge, P. J., & Manke, C. W. (1995). Computer simulation of dilute
polymer solutions with the dissipative particle dynamics method. Journal of Rheology , 39 (3),
567-579.

Schneider, T., & Stoll, E. (1978). Molecular-dynamics study of a three-dimensional one-
component model for distortive phase transitions. Physical Review B , 17, 1302-1322.

Schwefel, H.-P. (1975). Evolutionsstrategie und numerische Optimierung (PhD thesis, in German).
Berlin: Technical University of Berlin.

54

Soddemann, T., Dünweg, B., & Kremer, K. (2003). Dissipative particle dynamics: A useful
thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Physical
Review E , 68, 046702.

Succi, S. (2001). The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford
University Press.

Sutmann, G. (2002). Classical molecular dynamics. In J. Grotendorst, D. Marx, & A.
Muramatsu (Eds.), Quantum Simulations of Complex Many-Body Systems: From Theory to
Algorithms, Lecture Notes, NIC Series (Vol. 10, pp. 211-254). Jülich: John von Neumann
Institute for Computing.

Swope, W. C., Andersen, H. C., Berens, P. H., & Wilson, K. R. (1982). A computer simulation
method for the calculation of equilibrium constants for the formation of physical clusters of
molecules: Application to small water clusters. Journal of Chemical Physics , 76, 637.

Trofimov, S. Y. (2003). Thermodynamic consistency in dissipative particle dynamics (PhD Thesis).
Technische Universiteit Eindhoven. Eindhoven: Eindhoven University Press.

Ulam, S., Richtmyer, R. D., & von Neumann, J. (1947). Statistical methods in neutron diffusion.
Los Alamos Scientific Laboratory report LAMS-551.

Weinberg, S. (2003). The Discovery of Subatomic Particles. Cambridge: Cambridge University
Press.

Veltman, M. (2003). Facts and Mysteries in Elementary Particle Physics. Singapore: World
Scientific Publishing.

Verlet, L. (1967). Computer experiments on classical fluids. I. Thermodynamical properties of
Lennard-Jones molecules. Physical Review , 159, 98-103.

Whittle, M., & Dickinson, E. (2001). On simulating colloids by dissipative particle dynamics:
Issues and complications. Journal of Colloid and Interface Science , 242 (1), 106-109.

Wu, H., Xu, J., Xianfeng, H., Yuehong, Z., & Wen, H. (2006). Mesoscopic simulation of self-
assembly in surfactant oligomers by dissipative particle dynamics. Colloids and Surfaces A:
Physicochemical and Engineering Aspects , 290 (1-3), 239-246.

55

Appendix A – Algorithms
Derivation of the Verlet algorithm
For a system described by the equations of motion

𝜕𝒓௜𝜕𝑡 = 𝒗௜ , 𝜕𝒗௜𝜕𝑡 = 𝒂௜ , (B.1)

where 𝒓௜, 𝒗௜, and 𝒂௜ are the position, velocity, and acceleration vectors of particle 𝑖; the
common derivation of the Verlet algorithm (Verlet, 1967) for time integration starts with two
third-order Taylor expansions of the positions 𝒓௜:

𝒓௜(𝑡 + ∆𝑡) = 𝒓௜(𝑡) + 𝒗௜(𝑡)∆𝑡 + 12 𝒂௜(𝑡)∆𝑡ଶ + 16 𝒋௜(𝑡)∆𝑡ଷ + 𝑂(∆𝑡ସ) ,
𝒓௜(𝑡 − ∆𝑡) = 𝒓௜(𝑡) − 𝒗௜(𝑡)∆𝑡 + 12 𝒂௜(𝑡)∆𝑡ଶ − 16 𝒋௜(𝑡)∆𝑡ଷ + 𝑂(∆𝑡ସ) , (B.2)

where 𝒋௜ = డ𝒂೔డ௧ is the jerk, or the third derivative of the position of particle 𝑖 with respect to
time, and ∆𝑡 is the integration time step. Adding equations (B.2) yields

 𝒓௜(𝑡 + ∆𝑡) = 2𝒓௜(𝑡) − 𝒓௜(𝑡 − ∆𝑡) + 𝒂௜(𝑡)∆𝑡ଶ + 𝑂(∆𝑡ସ) , (B.3)

which is the basic form of the Verlet algorithm, giving the positions at the next time step 𝒓௜(𝑡 + ∆𝑡) based on the acceleration 𝒂௜(𝑡) and the positions in the previous two time steps, 𝒓௜(𝑡) and 𝒓௜(𝑡 − ∆𝑡), with an error of the order of ∆𝑡ସ.

An issue with the basic Verlet algorithm is that the velocities 𝒗௜ are not explicitly generated,
while these are usually needed for measurements, such as for the calculation of the kinetic
energy of the system. It is straightforward to compute these from the positions using the
relation

 𝒗௜(𝑡) = 𝒓௜(𝑡 + ∆𝑡) − 𝒓௜(𝑡 − ∆𝑡)2∆𝑡 , (B.4)

with an error of the order of ∆𝑡ଶ.

Derivation of the velocity Verlet algorithm
The standard Verlet algorithm described in the previous section has the undesirable property
that for the computation of positions at time 𝑡 + ∆𝑡, the positions at time 𝑡 and 𝑡 − ∆𝑡 should
be kept track of. The velocity Verlet algorithm (Swope, Andersen, Berens, & Wilson, 1982) is
designed so that it alleviates this problem, i.e. it can start running from a given configuration

56

at just one time step, and provides both the positions 𝒓௜ and velocities 𝒗௜ explicitly at every
time step.

For equations of motion (B.1), one can derive the velocity Verlet algorithm by starting with
an expansion of 𝒓௜:

 𝒓௜(𝑡 + ∆𝑡) = 𝒓௜(𝑡) + 𝒗௜(𝑡)∆𝑡 + 12 𝒂௜(𝑡)∆𝑡ଶ + 𝑂(∆𝑡ଷ) (B.5)

and similarly for 𝒗௜:
 𝒗௜(𝑡 + ∆𝑡) = 𝒗௜(𝑡) + 𝒂௜(𝑡)∆𝑡 + 12 𝒋௜(𝑡)∆𝑡ଶ + 𝑂(∆𝑡ଷ) . (B.6)

To write the jerk 𝒋௜ = డ𝒂೔డ௧ in equation (B.6) in terms of 𝒂௜, one can use the relation

 𝒂௜(𝑡 + ∆𝑡) = 𝒂௜(𝑡) + 𝒋௜(𝑡)∆𝑡 + 𝑂(∆𝑡ଶ) , (B.7)

which, when multiplied by ∆௧ ଶ , gives

12 𝒋௜(𝑡)∆𝑡ଶ = 12 [𝒂௜(𝑡 + ∆𝑡) − 𝒂௜(𝑡)]∆𝑡 + 𝑂(∆𝑡ଷ) . (B.8)

Putting this into equation (B.6) yields

 𝒗௜(𝑡 + ∆𝑡) = 𝒗௜(𝑡) + 12 [𝒂௜(𝑡 + ∆𝑡) + 𝒂௜(𝑡)]∆𝑡 + 𝑂(∆𝑡ଷ) , (B.9)

which, with equation (B.5), forms the basic form of the velocity Verlet algorithm. The
equations (B.5) and (B.9) are usually put into the form

𝒓௜(𝑡 + ∆𝑡) = 𝒓௜(𝑡) + 𝒗௜(𝑡)∆𝑡 + 12 𝒂௜(𝑡)∆𝑡ଶ ,𝒗௜ ൬𝑡 + ∆𝑡2 ൰ = 𝒗௜(𝑡) + 12 𝒂௜(𝑡)∆𝑡 , 𝒂௜(𝑡 + ∆𝑡) = 𝑭௜(𝑡 + ∆𝑡)𝑚௜ , 𝒗௜(𝑡 + ∆𝑡) = 𝒗௜ ൬𝑡 + ∆𝑡2 ൰ + 12 𝒂௜(𝑡 + ∆𝑡)∆𝑡 ,
(B.10)

splitting the velocity updates into two parts by defining a half-step velocity 𝒗௜ ቀ𝑡 + ∆௧ଶ ቁ and
updating the accelerations 𝒂௜ in-between, using forces 𝑭௜. The algorithm, with the
elimination of velocities 𝒗௜, is mathematically equivalent to the standard Verlet algorithm,
meaning that it computes exactly the same trajectories for the same initial conditions of a
system.

57

Appendix B – Source Codes
MD and DPD
Verlet engine

The code includes the abstract Engine class implementing the velocity Verlet time
integration scheme (see Section 1.2.1), which is inherited by the MDEngine and DPDEngine
classes.

Language: C#

using System;
using System.Collections;
using System.Collections.Generic;

namespace AtilimGunesBaydin.Physics.ParticleSimulation
{
 public struct Vector3D
 {
 internal double X;
 internal double Y;
 internal double Z;
 public double PSize;
 public double PSizeSquared;

 public Vector3D(double x, double y, double z)
 {
 X = x;
 Y = y;
 Z = z;
 PSizeSquared = -1;
 PSize = -1;
 }

 public void SetComponents(double[] v)
 {
 X = v[0];
 Y = v[1];
 Z = v[2];
 PSizeSquared = -1;
 PSize = -1;
 }

 public void SetComponents(double x, double y, double z)
 {
 X = x;
 Y = y;
 Z = z;
 PSizeSquared = -1;
 PSize = -1;
 }

 public double Size
 {
 get
 {
 if (PSize < 0)
 PSize = Math.Sqrt(SizeSquared);
 return PSize;
 }
 }

 public double SizeSquared
 {
 get
 {
 if (PSizeSquared < 0)
 PSizeSquared = X * X + Y * Y + Z * Z;
 return PSizeSquared;
 }
 }

 public double[] GetComponents()
 {
 return new double[] { X, Y, Z };
 }

 public Vector3D UnitVector()
 {

58

 return new Vector3D(X / Size, Y / Size, Z / Size);
 }

 public void Mod(double c)
 {
 X = X % c;
 Y = Y % c;
 Z = Z % c;
 if (X < 0)
 X += c;
 if (Y < 0)
 Y += c;
 if (Z < 0)
 Z += c;
 PSize = -1;
 PSizeSquared = -1;
 }

 public Vector3D Copy()
 {
 return new Vector3D(X, Y, Z);
 }

 public void Add(Vector3D v)
 {
 X += v.X;
 Y += v.Y;
 Z += v.Z;
 PSize = -1;
 PSizeSquared = -1;
 }

 public void Subtract(Vector3D v)
 {
 X -= v.X;
 Y -= v.Y;
 Z -= v.Z;
 PSize = -1;
 PSizeSquared = -1;
 }

 public static Vector3D ZeroVector()
 {
 return new Vector3D(0, 0, 0);
 }

 public static Vector3D operator +(Vector3D v1, Vector3D v2)
 {
 return new Vector3D(v1.X + v2.X, v1.Y + v2.Y, v1.Z + v2.Z);
 }

 public static Vector3D operator -(Vector3D v1, Vector3D v2)
 {
 return new Vector3D(v1.X - v2.X, v1.Y - v2.Y, v1.Z - v2.Z);
 }

 public static Vector3D operator *(Vector3D v, double c)
 {
 return new Vector3D(c * v.X, c * v.Y, c * v.Z);
 }

 public double Dot(Vector3D v)
 {
 return X * v.X + Y * v.Y + Z * v.Z;
 }
 }

 public delegate void ProgressUpdateDelegate(double progress, int steps, double kineticEnergy,
double[][] radialDistributionFunction, double diffusionCoefficient);

 public abstract class Engine
 {
 protected int Particles;
 private double BoxSize;
 private double BoxSizeOverTwo;
 private double DeltaT;
 private double DeltaTOverTwo;
 private double DeltaTSquaredOverTwo;
 protected double RCutOff;
 protected double RCutOffSquared;

 public Vector3D[] Positions;
 protected Vector3D[] Velocities;
 private Vector3D[] Accelerations;
 public Vector3D[] Displacements;

59

 protected bool[,] NeighborMatrix;
 private double RNeighborSearch;
 private double RNeighborSearchSquared;
 private bool NeighborsChanged;
 private double NeighborsChangedTresholdSquared;

 private double RPotentialEnd;

 protected int DiscretizationResolution;
 protected double DiscretizationDeltaR;

 private int[] RadialDistributionBins;
 private double RadialDistributionNFactor;
 public double[][] RadialDistributionFunction;

 //private int VelocityAutocorrelationTimesteps;
 //private Vector3D[] VelocityAutocorrelationStartingVelocities;
 //public int VelocityAutocorrelationTimestep;
 //private double VelocityAutocorrelationValue;
 //private double[][] VelocityAutocorrelationFunction;

 //public double Virial;

 public int DiffusionCoefficientTimeStep;
 public Vector3D[] DiffusionCoefficientR0;
 private int DiffusionCoefficientTimeSteps;
 public double DiffusionCoefficient;

 public event ProgressUpdateDelegate ProgressUpdate;
 public bool Abort;
 public double KineticEnergy;

 public Engine(int particles, double boxSize, double deltaT, double rCutOff, double rNeighborSearch,
double rPotentialEnd, int discretizationResolution)
 {
 Particles = particles;
 BoxSize = boxSize;
 BoxSizeOverTwo = BoxSize / 2.0;
 DeltaT = deltaT;
 DeltaTOverTwo = DeltaT / 2.0;
 DeltaTSquaredOverTwo = Math.Pow(DeltaT, 2) / 2.0;
 RCutOff = rCutOff;
 RCutOffSquared = rCutOff * rCutOff;

 Positions = new Vector3D[Particles];
 Velocities = new Vector3D[Particles];
 Accelerations = new Vector3D[Particles];
 Displacements = new Vector3D[Particles];
 for (int i = 0; i < Particles; i++)
 {
 Positions[i] = Vector3D.ZeroVector();
 Velocities[i] = Vector3D.ZeroVector();
 Accelerations[i] = Vector3D.ZeroVector();
 Displacements[i] = Vector3D.ZeroVector();
 }

 RNeighborSearch = rNeighborSearch;
 RNeighborSearchSquared = rNeighborSearch * rNeighborSearch;
 NeighborMatrix = new bool[Particles, Particles];
 NeighborsChanged = true;
 NeighborsChangedTresholdSquared = Math.Pow((rNeighborSearch - rCutOff) / 2.0, 2);

 RPotentialEnd = rPotentialEnd;

 DiscretizationResolution = discretizationResolution;
 DiscretizationDeltaR = RPotentialEnd / DiscretizationResolution;

 RadialDistributionBins = new int[DiscretizationResolution];
 RadialDistributionNFactor = (2.0 * BoxSize * BoxSize * BoxSize) / (Particles * Particles * 4.0
* Math.PI * DiscretizationDeltaR);
 RadialDistributionFunction = new double[DiscretizationResolution][];
 double r = DiscretizationDeltaR / 2.0;
 for (int i = 0; i < DiscretizationResolution; i++)
 {
 RadialDistributionFunction[i] = new double[2];
 RadialDistributionFunction[i][0] = r;
 r += DiscretizationDeltaR;
 }

 DiffusionCoefficientTimeStep = 0;
 DiffusionCoefficientTimeSteps = 500;
 DiffusionCoefficientR0 = new Vector3D[Particles];
 DiffusionCoefficient = 0;
 }

 public void VerletStep(int steps)
 {

60

 Vector3D DeltaPosition;

 UpdateNeighbors();
 for (int s = 0; s < steps; s++)
 {
 NeighborsChanged = false;
 for (int i = 0; i < Particles; i++)
 {
 Velocities[i].Add(Accelerations[i] * DeltaTOverTwo);
 DeltaPosition = (Velocities[i] * DeltaT);
 Positions[i].Add(DeltaPosition);
 Positions[i].Mod(BoxSize);
 Displacements[i].Add(DeltaPosition);

 if (!NeighborsChanged)
 if (DeltaPosition.SizeSquared > NeighborsChangedTresholdSquared)
 NeighborsChanged = true;
 }

 if (NeighborsChanged)
 UpdateNeighbors();

 UpdateAccelerations();

 for (int i = 0; i < Particles; i++)
 {
 Velocities[i].Add(Accelerations[i] * DeltaTOverTwo);
 }
 }
 }

 public void RunVerlet(int steps)
 {
 ProgressUpdate(0.0001, 0, KineticEnergy, RadialDistributionFunction, DiffusionCoefficient);
 Abort = false;

 int innersteps = 50;
 double outersteps = steps / (double)innersteps;

 for (int s = 0; s < outersteps; s++)
 {
 if (Abort)
 break;

 VerletStep(innersteps);
 UpdateMeasurements();

 //Diffusion coefficient
 if (DiffusionCoefficientTimeStep == 0)
 {
 for (int i = 0; i < Particles; i++)
 {
 DiffusionCoefficientR0[i] = Displacements[i].Copy();
 }
 }
 else if (DiffusionCoefficientTimeStep >= DiffusionCoefficientTimeSteps)
 {
 DiffusionCoefficient = 0;
 for (int i = 0; i < Particles; i++)
 {
 DiffusionCoefficientR0[i].Subtract(Displacements[i]);
 DiffusionCoefficient += DiffusionCoefficientR0[i].SizeSquared;
 }
 DiffusionCoefficient /= (Particles * 6 * DiffusionCoefficientTimeStep * DeltaT);

 DiffusionCoefficientTimeStep = -innersteps;
 }
 DiffusionCoefficientTimeStep += innersteps;

 if (s % 2 == 0)
 ProgressUpdate((s + 1) / outersteps, (s + 1) * innersteps, KineticEnergy,
RadialDistributionFunction, DiffusionCoefficient);
 }
 }

 public void NearestImageTransform(ref Vector3D v)
 {
 //if (Math.Abs(v.X) > BoxSizeOverTwo)
 // v.X -= Math.Sign(v.X) * BoxSize;
 //if (Math.Abs(v.Y) > BoxSizeOverTwo)
 // v.Y -= Math.Sign(v.Y) * BoxSize;
 //if (Math.Abs(v.Z) > BoxSizeOverTwo)
 // v.Z -= Math.Sign(v.Z) * BoxSize;
 v.X -= BoxSize * Math.Round(v.X / BoxSize);
 v.Y -= BoxSize * Math.Round(v.Y / BoxSize);
 v.Z -= BoxSize * Math.Round(v.Z / BoxSize);
 }

61

 public void UpdateNeighbors()
 {
 Vector3D rij;
 bool neighbors;

 for (int i = 0; i < Particles; i++)
 {
 for (int j = 0; j < i; j++)
 {
 rij = Positions[i] - Positions[j];
 NearestImageTransform(ref rij);

 neighbors = (rij.SizeSquared < RNeighborSearchSquared);
 NeighborMatrix[i, j] = neighbors;
 NeighborMatrix[j, i] = neighbors;
 }
 }
 }

 public void UpdateAccelerations()
 {
 Vector3D rij;
 Vector3D force;

 //Virial = 0;

 for (int i = 0; i < Particles; i++)
 Accelerations[i] = Vector3D.ZeroVector();

 for (int i = 0; i < Particles; i++)
 {
 for (int j = 0; j < i; j++)
 {
 if (NeighborMatrix[i, j])
 {
 rij = Positions[i] - Positions[j];
 NearestImageTransform(ref rij);

 if (rij.SizeSquared < RCutOffSquared)
 {
 //Force
 force = Force(i, j, ref rij);
 Accelerations[i] += force;
 Accelerations[j] -= force;

 //Virial
 //Virial += rij.Dot(force);
 }
 }
 }
 }
 //Virial /= Particles;
 }

 protected abstract Vector3D Force(int i, int j, ref Vector3D rij);

 public void UpdateMeasurements()
 {
 Vector3D rij;
 double RadialDistributionBinIndex;
 RadialDistributionBins = new int[DiscretizationResolution];

 KineticEnergy = 0;
 for (int i = 0; i < Particles; i++)
 {
 KineticEnergy += Velocities[i].SizeSquared;

 for (int j = 0; j < i; j++)
 {
 if (NeighborMatrix[i, j])
 {
 rij = Positions[i] - Positions[j];
 NearestImageTransform(ref rij);

 //Radial distribution function
 RadialDistributionBinIndex = (rij.Size / DiscretizationDeltaR);

 if (RadialDistributionBinIndex < DiscretizationResolution)
 RadialDistributionBins[(int)RadialDistributionBinIndex]++;
 }
 }
 }

 for (int i = 0; i < DiscretizationResolution; i++)
 RadialDistributionFunction[i][1] = (RadialDistributionNFactor * RadialDistributionBins[i])
/ (RadialDistributionFunction[i][0] * RadialDistributionFunction[i][0]);

62

 KineticEnergy /= 2.0;
 }

 public void SetPositionsAndVelocities(double[][] positions, double[][] velocities)
 {
 for (int i = 0; i < Particles; i++)
 {
 Positions[i].SetComponents(positions[i]);
 Velocities[i].SetComponents(velocities[i]);
 Displacements[i] = Vector3D.ZeroVector();
 Accelerations[i] = Vector3D.ZeroVector();
 }

 UpdateNeighbors();
 UpdateMeasurements();
 }

 public double[][] GetPositions()
 {
 double[][] ret = new double[Particles][];

 for (int i = 0; i < Particles; i++)
 {
 ret[i] = Positions[i].GetComponents();
 }

 return ret;
 }

 public double[][] GetVelocities()
 {
 double[][] ret = new double[Particles][];

 for (int i = 0; i < Particles; i++)
 {
 ret[i] = Velocities[i].GetComponents();
 }

 return ret;
 }

 public double[][] EscapeTimeDistribution(double rmin, double rmax, double tmax, int resolution)
 {
 Vector3D rij;
 double rrange = rmax - rmin;

 int tstep = (int)((tmax / DeltaT) / (resolution - 1));

 double[][] ret = new double[resolution][];
 for (int i = 0; i < resolution; i++)
 {
 ret[i] = new double[resolution];
 }

 int[,] startrindices = new int[Particles, Particles];
 int trackedpairs = 0;
 for (int i = 0; i < Particles; i++)
 {
 for (int j = 0; j < i; j++)
 {
 rij = Positions[i] - Positions[j];
 NearestImageTransform(ref rij);

 if ((rij.Size < rmin) || (rij.Size >= rmax))
 {
 startrindices[i, j] = -1;
 }
 else
 {
 startrindices[i, j] = (int)(((rij.Size - rmin) / rrange) * resolution);
 trackedpairs++;

 ret[0][startrindices[i, j]]++;
 }
 }
 }

 for (int t = 1; t < resolution; t++)
 {
 VerletStep(tstep);

 for (int i = 0; i < Particles; i++)
 {
 for (int j = 0; j < i; j++)
 {

63

 if (startrindices[i, j] != -1)
 {
 rij = Positions[i] - Positions[j];
 NearestImageTransform(ref rij);

 if (rij.Size < rmax)
 {
 ret[t][startrindices[i, j]]++;
 }
 else
 {
 startrindices[i, j] = -1;
 }
 }
 }
 }
 }

 for (int i = resolution - 1; i >= 0; i--)
 {
 for (int j = 0; j < resolution; j++)
 {
 ret[i][j] = (ret[i][j] / ret[0][j]);
 }
 }

 return ret;
 }

 public void testt()
 {
 ProgressUpdate(0.0001, 0, KineticEnergy, RadialDistributionFunction, DiffusionCoefficient);
 }
 }
}

MD simulation interface

Code for performing MD simulations in Mathematica.

Language: Mathematica

(*.NET/Link*)

Needs["NETLink`"];
InstallNET[];
LoadNETAssembly["AtilimGunesBaydin.Physics.ParticleSimulation.dll"];

(*Initialization and run*)

initialize[] := Module[{},
 x = If[d == 3,
 Flatten[Table[{xx, yy, zz}, {xx, 0., l - (l/n^(1./3)),
 l/n^(1./3)}, {yy, 0., l - (l/n^(1./3)), l/n^(1./3)}, {zz, 0.,
 l - (l/n^(1./3)), l/n^(1./3)}], 2],
 Flatten[Table[{xx, yy, 0.}, {xx, 0., l - (l/Sqrt[n]),
 l/Sqrt[n]}, {yy, 0., l - (l/Sqrt[n]), l/Sqrt[n]}], 1]];
 (*x[[1]]+=l/1000.;*)
 Do[x[[i, j]] += RandomReal[{0, l/1000.}], {i, n}, {j, d}];
 v = Table[0, {n}, {3}];
 mdEngine =
 NETNew["AtilimGunesBaydin.Physics.ParticleSimulation.MDEngine", Floor[n],
 l, \[CapitalDelta]t, skin, rc, \[Epsilon], \[Sigma], 200, 1500];
 mdEngine@RunVerlet[x, v, 0];
 coreSteps = 50;
 timeStep = 1; timeStep = 0;
 time = 0;
 progress = 10^-6;
 startTime = -1;
 kineticEnergy = mdEngine@KineticEnergy[];
 potentialEnergy = mdEngine@PotentialEnergy[];
 totalEnergy = 0;
 temperature = 0;
 pressure = 0;
 vRMS = 0;
 velocityAutocorrelation = {{0, 0}};
 velocityAutocorrelationTimestep = 0;
 diffusionCoefficient = 0;
 kineticEnergyHistory = {{0, 0}};
 potentialEnergyHistory = {{0, 0}};

64

 totalEnergyHistory = {{0, 0}};
 pressureHistory = {{0, 0}};
 radialDistributionHistory =
 Table[mdEngine@RadialDistributionFunction, {20}];
 running = False;
 abort = False;
 startTime = -1;
];

runVerlet[steps_] :=
 Module[{}, running = True; startTime = AbsoluteTime[];
 startTimeStep = timeStep; Do[
 kineticEnergy = mdEngine@KineticEnergy[];
 potentialEnergy = mdEngine@PotentialEnergy[];
 totalEnergy = kineticEnergy + potentialEnergy;
 temperature = 2 kineticEnergy/(d n);
 pressure = (n temperature + mdEngine@Virial/d)/l^d;
 vRMS = Sqrt[2 kineticEnergy/n];
 velocityAutocorrelation =
 mdEngine@VelocityAutocorrelationFunction;
 velocityAutocorrelationTimestep =
 mdEngine@VelocityAutocorrelationTimestep;
 diffusionCoefficient = (\[CapitalDelta]t/d)
 Sum[velocityAutocorrelation[[j, 2]], {j,
 Length[velocityAutocorrelation]}];
 AppendTo[kineticEnergyHistory, {time, kineticEnergy}];
 AppendTo[potentialEnergyHistory, {time, potentialEnergy}];
 AppendTo[totalEnergyHistory, {time, totalEnergy}];
 AppendTo[pressureHistory, {time, pressure}];
 AppendTo[radialDistributionHistory,
 mdEngine@RadialDistributionFunction];
 If[abort, abort = False; Break[];];
 mdEngine@RunVerlet[x, v, coreSteps];
 timeStep += coreSteps;
 time = timeStep \[CapitalDelta]t;
 progress = i (coreSteps/steps);
 FinishDynamic[];,
 {i, steps/coreSteps}]; finishTime = AbsoluteTime[];
 running = False;];

(*Visualization*)

showParticles3D[] :=
 Graphics3D[{Table[{Blend[{Blue, Red}, Norm[v[[i]]]/1],
 Sphere[x[[i]], \[Sigma]/2]}, {i, n}]},
 PlotRange -> {{0, l}, {0, l}, {0, l}},
 PlotRangePadding -> \[Sigma]/2, BoxRatios -> {1, 1, 1},
 Axes -> True, AxesEdge -> {{-1, -1}, {-1, -1}, {-1, -1}},
 AxesLabel -> {"x", "y", "z"}, ImageSize -> 350];

showParticles2D[] :=
 Graphics[{Table[{Blend[{Blue, Red}, Norm[v[[i]]]/1],
 Reap[
 Sow[Disk[Take[x[[i]], 2], \[Sigma]/2]];
 If[x[[i, 1]] < \[Sigma]/2,
 Sow[Disk[Take[x[[i]], 2] + {l, 0}, \[Sigma]/2]];
 If[x[[i, 2]] < \[Sigma]/2,
 Sow[Disk[Take[x[[i]], 2] + {l, l}, \[Sigma]/2]];];
 If[l - x[[i, 2]] < \[Sigma]/2,
 Sow[Disk[Take[x[[i]], 2] + {l, -l}, \[Sigma]/2]];];];
 If[x[[i, 2]] < \[Sigma]/2,
 Sow[Disk[Take[x[[i]], 2] + {0, l}, \[Sigma]/2]];];
 If[l - x[[i, 1]] < \[Sigma]/2,
 Sow[Disk[Take[x[[i]], 2] + {-l, 0}, \[Sigma]/2]];
 If[x[[i, 2]] < \[Sigma]/2,
 Sow[Disk[Take[x[[i]], 2] + {-l, l}, \[Sigma]/2]];];
 If[l - x[[i, 2]] < \[Sigma]/2,
 Sow[Disk[Take[x[[i]], 2] + {-l, -l}, \[Sigma]/2]];];];
 If[l - x[[i, 2]] < \[Sigma]/2,
 Sow[Disk[Take[x[[i]], 2] + {0, -l}, \[Sigma]/2]];];
][[2]]}, {i, n}]}, PlotRange -> {{0, l}, {0, l}},
 PlotRangeClipping -> True, AspectRatio -> 1, Frame -> True,
 FrameLabel -> {"x", "y"}, ImageSize -> 350];

showParticles2DFast[] :=
 Graphics[{Table[{Blend[{Blue, Red}, Norm[v[[i]]]/1],
 Disk[Take[x[[i]], 2], \[Sigma]/2],
 Disk[Take[x[[i]], 2] + If[x[[i, 1]] < \[Sigma]/2, {l, 0}, 0] +
 If[x[[i, 2]] < \[Sigma]/2, {0, l}, 0] +
 If[l - x[[i, 1]] < \[Sigma]/2, {-l, 0}, 0] +
 If[l - x[[i, 2]] < \[Sigma]/2, {0, -l}, 0], \[Sigma]/2]}, {i,
 n}]}, PlotRange -> {{0, l}, {0, l}}, PlotRangeClipping -> True,
 AspectRatio -> 1, Frame -> True, FrameLabel -> {"x", "y"},
 ImageSize -> 350];

manipulator[label_, {Dynamic[val_], init_}, range_,
 options___] := (val = init;

65

 Row[{Pane[label, 86, Alignment -> Right],
 InputField[Dynamic[val], ImageSize -> 50, options],
 Manipulator[Dynamic[val], range, ImageSize -> Tiny]},
 Spacer[1]]);

energyPlot[] :=
 Labeled[ListLinePlot[{Tooltip[kineticEnergyHistory,
 "Kinetic energy"],
 Tooltip[potentialEnergyHistory, "Potential energy"],
 Tooltip[totalEnergyHistory, "Total energy"]},
 ImageSize -> {300, 200}, AxesLabel -> {"t", ""},
 PlotRange -> All], StandardForm["Energy"]];

pressurePlot[] :=
 Labeled[ListLinePlot[pressureHistory, PlotStyle -> {Darker[Yellow]},
 ImageSize -> {300, 200}, AxesLabel -> {"t", "P"},
 PlotRange -> All, Filling -> Axis, FillingStyle -> LightYellow],
 StandardForm["Pressure"]];

radialDistributionPlot[] :=
 Labeled[ListLinePlot[(1/20)
 Plus @@ Take[radialDistributionHistory, -20],
 PlotStyle -> {Darker[Green]}, ImageSize -> {300, 200},
 AxesLabel -> {"r", "g(r)"}, PlotRange -> {{0, l/2}, All},
 Filling -> Bottom, FillingStyle -> LightGreen],
 StandardForm["Radial distribution function"]];

velocityAutocorrelationPlot[] :=
 Labeled[ListLinePlot[velocityAutocorrelation,
 PlotStyle -> {Darker[Blue]}, ImageSize -> {300, 200},
 AxesLabel -> {"t", "C(t)"}, PlotRange -> {All, {-2, 4}},
 Filling -> Axis, FillingStyle -> LightBlue,
 Epilog ->
 Line[{{velocityAutocorrelationTimestep \[CapitalDelta]t, -4}, \
{velocityAutocorrelationTimestep \[CapitalDelta]t, 4}}]],
 StandardForm["Velocity autocorrelation"]];

(*Experiment*)

experimentPanel[] :=
 Module[{}, visualization = "Plots"; d = 3; n = 1000; rc = 2.5;
 initialize[]; Panel[Row[{
 Column[{
 Style["MD parameters", Bold, Medium],
 Row[{Spacer[90], Style["Lennard-Jones"]}],
 manipulator[
 "\[Epsilon]", {Dynamic[\[Epsilon]], 1}, {0, 2, 0.01},
 Enabled -> Dynamic[! running]],
 manipulator["\[Sigma]", {Dynamic[\[Sigma]], 1}, {0, 5, 0.01},
 Enabled -> Dynamic[! running]],
 Row[{Spacer[90],
 Dynamic[Plot[
 4 \[Epsilon] (\[Sigma]/r)^12 - (\[Sigma]/r)^6, {r, 0, rc},
 ImageSize -> 130, AspectRatio -> 1,
 PlotRange -> {{0, rc}, {-0.5, 0.5}},
 AxesLabel -> {"r",
 "\!\(*SubscriptBox[\"\[CapitalPhi]\", \
\"lj\"]\)(r)"}]]}],
 , Style["Simulation parameters", Bold, Medium],
 manipulator[
 "\[CapitalDelta]t", {Dynamic[\[CapitalDelta]t],
 0.001}, {0.0005, 0.009, 0.0005},
 Enabled -> Dynamic[! running]],
 Row[{Spacer[90],
 Dynamic["(0.005\!\(*SubscriptBox[\"r\", \
\"c\"]\)/\!\(*SubscriptBox[\"v\", \"rms\"]\)=" <>
 ToString[Round[0.005/Sqrt[d], 0.0001]] <>
 ToString[")"]]}],
 manipulator[
 "\!\(*SubscriptBox[\"r\", \"cutoff\"]\)", {Dynamic[rc],
 2.5}, {1, 10, 0.01}, Enabled -> Dynamic[! running]],
 manipulator["Skin", {Dynamic[skin], 0.2}, {0, 1, 0.1},
 Enabled -> Dynamic[! running]],
 Row[{Pane["Dimensions (d)", 86, Alignment -> Right],
 SetterBar[Dynamic[d], {2, 3},
 Enabled -> Dynamic[! running]]}, Spacer[1]],
 manipulator[
 "Box size (L)", {Dynamic[l], 8}, {Dynamic[2 rc], 40, 0.1},
 Enabled -> Dynamic[! running]],
 Row[{Spacer[90],
 Dynamic["(must be > 2\!\(*SubscriptBox[\"r\",
RowBox[{\"cutoff\", \" \"}]]\)= " <> ToString[Round[rc 2, 0.001]] <>
 ToString[")"]]}],
 manipulator["Particles (N)", {Dynamic[n], 512},
 Dynamic[{Table[i^d, {i, Evaluate[Floor[3400^(1/d)]]}]}],
 Enabled -> Dynamic[! running]],
 Row[{Pane["\[Rho]", 86, Alignment -> Right],

66

 InputField[Dynamic[Round[n/l^d, 0.1]], ImageSize -> 50,
 Enabled -> False],
 Pane["(N/\!\(*SuperscriptBox[\"L\", \"d\"]\))"]},
 Spacer[1]],
 , Style["Visualization", Bold, Medium],
 Row[{Spacer[86],

 SetterBar[
 Dynamic[visualization], {"None", "Plots", "Particles"}]},
 Spacer[1]],
 \!\(*
GraphicsBox[
{GrayLevel[0.5], AbsoluteThickness[1], LineBox[{{0, 0.5}, {1, 0.5}}]},

ImageSize->{210., Automatic},
PlotRange->{{0, 1}, {0.49, 0.51}}]\),
 manipulator["Steps", {Dynamic[steps], 3000}, {0, 50000, 50},
 Enabled -> Dynamic[! running]],
 Row[{Spacer[90],
 Button["Initialize", initialize[];, ImageSize -> 70]}],
 Row[{Spacer[90],
 Button["Start", runVerlet[steps];, Method -> "Queued",
 ImageSize -> 70]}],
 Row[{Spacer[90],
 Button["Stop", abort = True;, Method -> "Preemptive",
 ImageSize -> 70]}],
 }, BaselinePosition -> Top],
 Column[{
 Dynamic[Refresh[Panel[Column[{Grid[{
 {"Timestep",
 " : " <> ToString[timeStep] <> " (t = " <>
 ToString[Round[time, 0.01]] <> ")", "Pressure",
 " : " <>
 ToString[EngineeringForm[pressure], StandardForm]},
 {"Kinetic en.",
 " : " <>
 ToString[EngineeringForm[kineticEnergy],
 StandardForm],
 "\!\(*SubscriptBox[\"v\", \"rms\"]\)",
 " : " <>
 ToString[EngineeringForm[vRMS], StandardForm]},
 {"Potential en.",
 " : " <>
 ToString[EngineeringForm[potentialEnergy],
 StandardForm], "Diffusion coeff.",
 " : " <>
 ToString[EngineeringForm[diffusionCoefficient],
 StandardForm]},
 {"Total en.",
 " : " <>
 ToString[EngineeringForm[totalEnergy],
 StandardForm]}}, Alignment -> Left,
 ItemSize -> {{{9, 14}}}], ,

 Switch[visualization, "None", "", "Plots",
 Column[{Row[{energyPlot[], Spacer[15],
 radialDistributionPlot[]}],
 Row[{pressurePlot[], Spacer[15],
 velocityAutocorrelationPlot[]}]}], "Particles",
 If[d == 2, showParticles2D[], showParticles3D[]]]
 }],
 ImageSize -> {650, Automatic},
 BaseStyle -> "StandardForm"],
 TrackedSymbols -> {timeStep, visualization}]],
 Dynamic[
 Refresh[Row[{Column[{ProgressIndicator[progress,
 ImageSize -> 150],
 ToString[Round[100. progress, 0.1]] <> "%"},
 BaseStyle -> "StandardForm"],
 If[running,
 timeLeft = (AbsoluteTime[] - startTime) (1 - progress)/
 progress;
 Column[{"Started : " <> DateString[startTime],
 "Estimated finish : " <>
 DateString[AbsoluteTime[] + timeLeft]},
 BaseStyle -> "StandardForm"],
 If[startTime != -1,
 Column[{ToString[timeStep - startTimeStep] <>
 " steps finished in",
 ToString[finishTime - startTime] <> " seconds."},
 BaseStyle -> "StandardForm"], ""]]}],
 TrackedSymbols -> {running, progress}]]
 }, BaselinePosition -> Top]
 }, Spacer[10]], ImageSize -> {930, Automatic}]];

67

DPD simulation interface

Code for performing DPD simulations in Mathematica.

Language: Mathematica

(*.NET/Link*)

Needs["NETLink`"];
InstallNET[];
LoadNETAssembly["AtilimGunesBaydin.Physics.ParticleSimulation.dll"];

encodeNETLinkArgument[a_] :=
 a /. {\[Infinity] -> 2010.1980, -\[Infinity] -> 2010.1981};

progressUpdateHandler[p_, s_, ke_, rdf_, dcoeff_] := Module[{},
 progress = p;
 kineticEnergy = ke;
 temperature = 2 kineticEnergy/(d n);
 vRMS = Sqrt[2 kineticEnergy/n];
 diffusionCoefficient = dcoeff;
 AppendTo[kineticEnergyHistory, {time, kineticEnergy}];
 AppendTo[temperatureHistory, {time, temperature}];
 AppendTo[radialDistributionHistory, rdf];
 timeStep = s;
 time = timeStep \[CapitalDelta]t;
 FinishDynamic[];
 dpdEngine@Abort = abort;
 x = dpdEngine@GetPositions[];
 v = dpdEngine@GetVelocities[];
];

(*Initialization and run*)

initializeParticles[] := Module[{},
 (*x=If[d==3,RandomReal[{0,l},{n,3}],Table[{RandomReal[{0,l}],
 RandomReal[{0,l}],0},{n}]];*)
 xinit =
 If[d == 3,
 Flatten[Table[{xx, yy, zz}, {xx, 0., l - (l/n^(1./3)),
 l/n^(1./3)}, {yy, 0., l - (l/n^(1./3)), l/n^(1./3)}, {zz, 0.,
 l - (l/n^(1./3)), l/n^(1./3)}], 2],
 Flatten[Table[{xx, yy, 0.}, {xx, 0., l - (l/Sqrt[n]),
 l/Sqrt[n]}, {yy, 0., l - (l/Sqrt[n]), l/Sqrt[n]}], 1]];
 Do[xinit[[i, j]] += RandomReal[{0, rc/100.}], {i, n}, {j, d}];
 vinit = Table[0, {n}, {3}];
];

initialize[] := Module[{},
 dpdEngine =
 NETNew["AtilimGunesBaydin.Physics.ParticleSimulation.DPDEngineDiscretizedOmega",
 Floor[n], l, \[CapitalDelta]t, (0.277 10^-9)/(4.65 10^-10), rc,
 l/20., \[Sigma], 2000, rcmax, Length[potential]];
 AddEventHandler[dpdEngine@ProgressUpdate, progressUpdateHandler];
 x = xinit;
 v = vinit;
 dpdEngine@SetPositionsAndVelocities[x, v];
 dpdEngine@
 SetConservativeForceAndOmega[
 encodeNETLinkArgument[conservativeForce], omega];
 progress = 10^-6;
 startTime = -1;
 kineticEnergy = 0;
 temperature = 0;
 vRMS = 10^-6.;
 diffusionCoefficient = 0;
 kineticEnergyHistory = {{0, 0}};
 temperatureHistory = {{0, 0}};
 radialDistributionHistory =
 Table[dpdEngine@RadialDistributionFunction, {20}];
 running = False;
 abort = False;
 startTime = -1;
 timeStep = 1; timeStep = 0;
 time = 0;
];

runVerlet[steps_] :=
 Module[{}, abort = False; running = True;
 startTime = AbsoluteTime[]; timeStep = 1; timeStep = 0; time = 0;
 startTimeStep = timeStep;
 kineticEnergyHistory = {{0, 0}};
 temperatureHistory = {{0, 0}};
 radialDistributionHistory =
 Table[dpdEngine@RadialDistributionFunction, {20}];

68

 dpdEngine@RunVerlet[steps];
 x = dpdEngine@GetPositions[];
 v = dpdEngine@GetVelocities[];
 finishTime = AbsoluteTime[]; running = False;];

loadPotential[fileName_] :=
 Module[{},
 If[fileName =!= $Canceled,
 potentialFile =
 StringDrop[fileName, StringLength[DirectoryName[fileName]]];
 potential =
 Import[fileName, "Table"] /. {"Infinity" -> \[Infinity],
 "Inf" -> \[Infinity]};
 rcmax = potential[[-1, 1]] + ((
 potential[[2, 1]] - potential[[1, 1]])/2); rc = rcmax;
 Quiet[conservativeForce =
 forceFromPotential[potential]]; \[CapitalDelta]t =
 Round[0.005 rc/Sqrt[d], 0.001];
 omega = Table[{0, 0}, {Length[potential]}],
 potentialFile = "<None>";]];

loadOmega[fileName_] :=
 Module[{},
 If[fileName =!= $Canceled,
 omegaFile =
 StringDrop[fileName, StringLength[DirectoryName[fileName]]];
 omega = Import[fileName, "Table"] /. {"Infinity" -> \[Infinity],
 "Inf" -> \[Infinity]};, potentialFile = "<None>";]];

loadParticles[fileName_] :=
 Module[{imported},
 If[fileName =!= $Canceled, imported = Import[fileName, "Table"];
 n = imported[[1, 1]]; l = imported[[1, 2]];
 xinit = Take[Rest[imported], n]];
 vinit = Take[Rest[imported], -n];];

saveParticles[fileName_] :=
 If[fileName =!= $Canceled,
 Export[fileName, Prepend[Join[x, v], {n, l}], "Table"]];

forceFromPotential[pot_] :=
 Module[{ret},
 ret = Table[{pot[[i, 1]], -(pot[[i + 1, 2]] - pot[[i, 2]])/(
 pot[[2, 1]] - pot[[1, 1]])}, {i,
 Length[pot] - 1}] /. {Indeterminate -> \[Infinity]};
 Append[ret, {pot[[-1, 1]], ret[[-1, 2]]}] /. {\[Infinity] ->
 310}];

(*Visualization*)

showParticles3D[] :=
 Graphics3D[{Table[{Blend[{Blue, Red}, Norm[v[[i]]]/Sqrt[d]],
 Sphere[x[[i]], 0.2]}, {i, n}]},
 PlotRange -> {{0, l}, {0, l}, {0, l}}, PlotRangePadding -> 0.2,
 BoxRatios -> {1, 1, 1}, Axes -> True,
 AxesEdge -> {{-1, -1}, {-1, -1}, {-1, -1}},
 AxesLabel -> {"x", "y", "z"}, ImageSize -> 350];

showParticles2D[] :=
 Graphics[{Table[{Blend[{Blue, Red}, Norm[v[[i]]]/1],
 Reap[
 Sow[Disk[Take[x[[i]], 2], 0.2]];
 If[x[[i, 1]] < 0.2, Sow[Disk[Take[x[[i]], 2] + {l, 0}, 0.2]];
 If[x[[i, 2]] < 0.2,
 Sow[Disk[Take[x[[i]], 2] + {l, l}, 0.2]];];
 If[l - x[[i, 2]] < 0.2,
 Sow[Disk[Take[x[[i]], 2] + {l, -l}, 0.2]];];];
 If[x[[i, 2]] < 0.2,
 Sow[Disk[Take[x[[i]], 2] + {0, l}, 0.2]];];
 If[l - x[[i, 1]] < 0.2,
 Sow[Disk[Take[x[[i]], 2] + {-l, 0}, 0.2]];
 If[x[[i, 2]] < 0.2,
 Sow[Disk[Take[x[[i]], 2] + {-l, l}, 0.2]];];
 If[l - x[[i, 2]] < 0.2,
 Sow[Disk[Take[x[[i]], 2] + {-l, -l}, 0.2]];];];
 If[l - x[[i, 2]] < 0.2,
 Sow[Disk[Take[x[[i]], 2] + {0, -l}, 0.2]];];
][[2]]}, {i, n}]}, PlotRange -> {{0, l}, {0, l}},
 PlotRangeClipping -> True, AspectRatio -> 1, Frame -> True,
 FrameLabel -> {"x", "y"}, ImageSize -> 350]

manipulator[label_, {Dynamic[val_], init_}, range_,
 options___] := (val = init;
 Row[{Pane[label, 86, Alignment -> Right],
 InputField[Dynamic[val], ImageSize -> 50, options],
 Manipulator[Dynamic[val], range, ImageSize -> Tiny, options]},
 Spacer[1]]);

69

temperaturePlot[] :=
 Labeled[ListLinePlot[temperatureHistory, PlotStyle -> {Darker[Red]},
 ImageSize -> {300, 200},
 AxesLabel -> {"t", "\!\(*SubscriptBox[\"k\", \"b\"]\)T"},
 PlotRange -> All, Filling -> Axis,
 FillingStyle -> RGBColor[1, 0.94, 0.94]],
 StandardForm["Temperature"]];

radialDistributionPlot[] :=
 Labeled[ListLinePlot[(1)
 Plus @@ Take[radialDistributionHistory, -1],
 PlotStyle -> {Darker[Green]}, ImageSize -> {300, 200},
 AxesLabel -> {"r", "g(r)"}, PlotRange -> {{0, rcmax}, All},
 Filling -> Bottom, FillingStyle -> LightGreen],
 StandardForm["Radial distribution function"]];

(*Experiment*)

experimentPanel[] :=
 Module[{}, potentialFile = "<None>"; omegaFile = "<None>";
 potential = Table[{0, 0}, {10}];
 conservativeForce = Table[{0, 0}, {10}];
 omega = Table[{0, 0}, {10}]; rcmax = 10; visualization = "Plots";
 d = 3; initializeParticles[]; initialize[]; Panel[Row[{
 Column[{
 Style["DPD parameters", Bold, Medium],
 Row[{Pane["Conserv. pot.", 86, Alignment -> Right],
 Dynamic[Labeled[
 ListLinePlot[{potential, {{rc, -5}, {rc, 5}}},
 ImageSize -> 130, AspectRatio -> 0.5,
 PlotRange -> {{0, rcmax}, {-1, 3.5}},
 PlotStyle -> {Blue, {Red, Dashed}},
 AxesLabel -> {"r", "\[Phi](r)"}], potentialFile]]},
 Spacer[1]],
 Row[{Pane["Omega", 86, Alignment -> Right],
 Dynamic[Labeled[
 ListLinePlot[{omega, {{rc, -5}, {rc, 5}}},
 ImageSize -> 130, AspectRatio -> 0.5,
 PlotRange -> {{0, rcmax}, All},
 PlotStyle -> {Purple, {Red, Dashed}},
 AxesLabel -> {"r", "\[Omega](r)"}], omegaFile]]},
 Spacer[1]],
 Row[{Pane["Resolution", 86, Alignment -> Right],
 InputField[Dynamic[Length[potential]], ImageSize -> 50,
 Enabled -> False]}, Spacer[1]],
 manipulator[
 "\[Sigma]", {Dynamic[\[Sigma]], 2.5}, {0, 30, 0.1},
 Enabled -> Dynamic[! running]],
 manipulator[
 "\!\(*SubscriptBox[\"r\", \"cutoff\"]\)", {Dynamic[rc],
 2.5}, {(0.277 10^-9)/(4.65 10^-10), Dynamic[rcmax], 0.001},
 Enabled -> Dynamic[! running]],
 Row[{Pane["Neigh. search", 86, Alignment -> Right],
 InputField[Dynamic[Round[l/20., 0.001]], ImageSize -> 50,
 Enabled -> False],
 Pane[" + \!\(*SubscriptBox[\"r\", \"cutoff\"]\)"]},
 Spacer[1]],
 manipulator[
 "\[CapitalDelta]t", {Dynamic[\[CapitalDelta]t],
 0.01}, {0.001, 0.1, 0.001}, Enabled -> Dynamic[! running]],
 Row[{Spacer[90],
 Dynamic["(0.005\!\(*SubscriptBox[\"r\", \
\"c\"]\)/\!\(*SubscriptBox[\"v\", \"rms\"]\)=" <>
 ToString[Round[0.005 rc/Sqrt[d], 0.0001]] <>
 ToString[")"]]}],
 Row[{Pane["Dimensions (d)", 86, Alignment -> Right],
 SetterBar[Dynamic[d], {2, 3},
 Enabled -> Dynamic[! running]]}, Spacer[1]],
 manipulator[
 "Box size (L)", {Dynamic[l], 8}, {Dynamic[2 rc], 15, 0.1},
 Enabled -> Dynamic[! running]],
 Row[{Spacer[90],
 Dynamic["(must be > 2\!\(*SubscriptBox[\"r\",
RowBox[{\"cutoff\", \" \"}]]\)= " <> ToString[Round[rc 2, 0.001]] <>
 ToString[")"]]}],
 manipulator["Particles (N)", {Dynamic[n], 512},
 Dynamic[{Table[i^d, {i, Evaluate[Floor[3400^(1/d)]]}]}],
 Enabled -> Dynamic[! running]],
 Row[{Pane["\[Rho]", 86, Alignment -> Right],
 InputField[Dynamic[Round[n/l^d, 0.001]], ImageSize -> 50,
 Enabled -> False],
 Pane["(N/\!\(*SuperscriptBox[\"L\", \"d\"]\))"]},
 Spacer[1]],
 , Style["Visualization", Bold, Medium],
 Row[{Spacer[86],
 SetterBar[

70

 Dynamic[visualization], {"None", "Plots", "Particles"}]},
 Spacer[1]],
 \!\(*
GraphicsBox[
{GrayLevel[0.5], AbsoluteThickness[1], LineBox[{{0, 0.5}, {1, 0.5}}]},

ImageSize->{210., Automatic},
PlotRange->{{0, 1}, {0.49, 0.51}}]\),
 manipulator["Steps", {Dynamic[steps], 500}, {0, 5000, 50},
 Enabled -> Dynamic[! running]],
 Row[{Spacer[90],
 Button["Initialize", initialize[];, ImageSize -> 70]}],
 Row[{Spacer[90],
 Button["Start", runVerlet[steps];, Method -> "Queued",
 ImageSize -> 70]}],
 Row[{Spacer[90],
 Button["Stop", abort = True;, Method -> "Preemptive",
 ImageSize -> 70]}],
 }, BaselinePosition -> Top],
 Column[{
 Row[{Button["Load potential...",
 loadPotential[
 SystemDialogInput["FileOpen",
 "Data from Johan\\Scaled\\Dimensionless\\"]]; initializeParticles[];
 initialize[];, Method -> "Queued", ImageSize -> 110],
 Spacer[5],
 Button["Load omega...",

 loadOmega[
 SystemDialogInput["FileOpen",
 "DPD\\Omega\\"]]; initializeParticles[]; initialize[];,
 Method -> "Queued", ImageSize -> 110], Spacer[5],
 Button["Create particles", initializeParticles[];
 initialize[];, Method -> "Queued", ImageSize -> 110],
 Spacer[5],
 Button["Load particles...",
 loadParticles[
 SystemDialogInput["FileOpen",
 "DPD\\Particles\\"]]; initialize[];, Method -> "Queued",
 ImageSize -> 110], Spacer[5],
 Button["Save particles...",
 saveParticles[
 SystemDialogInput["FileSave",
 "DPD\\Particles\\"]];, Method -> "Queued",
 ImageSize -> 110]}],
 Dynamic[Refresh[Panel[Column[{Grid[{
 {"Timestep",
 " : " <> ToString[timeStep] <> " (t = " <>
 ToString[Round[time, 0.01]] <> ")",
 "\!\(*SubscriptBox[\"v\", \"rms\"]\)",

 " : " <>
 ToString[EngineeringForm[vRMS], StandardForm]},
 {"Kinetic en.",
 " : " <>
 ToString[EngineeringForm[kineticEnergy],
 StandardForm], "Diffusion coeff.",
 " : " <>
 ToString[EngineeringForm[diffusionCoefficient],
 StandardForm]},
 {"\!\(*SubscriptBox[\"k\", \"b\"]\)T",
 " : " <>
 ToString[EngineeringForm[temperature],
 StandardForm]}
 }, Alignment -> Left, ItemSize -> {12, 1.5}], ,

 Switch[visualization, "None", "", "Plots",
 Column[{Row[{temperaturePlot[], Spacer[15],
 radialDistributionPlot[]}], Row[{Spacer[15]}]}],
 "Particles",
 If[d == 2, showParticles2D[], showParticles3D[]]]
 }],
 ImageSize -> {650, Automatic},
 BaseStyle -> "StandardForm"],
 TrackedSymbols -> {timeStep, visualization}]],
 Dynamic[
 Refresh[Row[{Column[{ProgressIndicator[progress,
 ImageSize -> 150],
 ToString[Round[100. progress, 0.1]] <> "%"},
 BaseStyle -> "StandardForm"],
 If[running,
 timeLeft = (AbsoluteTime[] - startTime) (1 - progress)/
 progress;
 Column[{"Started : " <> DateString[startTime],
 "Estimated finish : " <>
 DateString[AbsoluteTime[] + timeLeft]},
 BaseStyle -> "StandardForm"],

71

 If[startTime != -1,
 Column[{ToString[timeStep - startTimeStep] <>
 " steps finished in",
 ToString[finishTime - startTime] <> " seconds."},
 BaseStyle -> "StandardForm"], ""]]}],
 TrackedSymbols -> {running, progress}]]
 }, BaselinePosition -> Top]
 }, Spacer[10]], ImageSize -> {930, Automatic}]];

Inverse Monte Carlo
Metropolis Monte Carlo engine

The MCEngine class implements the Metropolis Monte Carlo algorithm (Section 1.2.2).

Language: C#

using System;
using System.Collections;
using System.Collections.Generic;

namespace AtilimGunesBaydin.Physics.ParticleSimulation
{
 public delegate void MCProgressUpdateDelegate(int mode, double progress, int steps, double
potentialEnergy, double[][] radialDistributionFunction);

 public class MCEngine
 {
 private int Particles;
 private double BoxSize;
 private double RCutOff;
 private double RCutOffSquared;
 private double[][] PotentialFunction;

 private Vector3D[] Positions;
 private double TotalPotential;
 private double RandomMovementRange;
 private double RandomMovementFactor;

 protected bool[,] NeighborMatrix;
 private double RNeighborSearch;
 private double RNeighborSearchSquared;

 private int DiscretizationResolution;
 private double DiscretizationDeltaR;

 private int[] RadialDistributionBins;
 private double RadialDistributionNFactor;
 private double[][] RadialDistribution;

 private Random UniformRandom;

 public event MCProgressUpdateDelegate ProgressUpdate;

 public bool Abort;

 public MCEngine(int particles, double boxSize, double rCutOff, int discretizationResolution, double
randomMovementRange, int randomSeed)
 {
 Particles = particles;
 BoxSize = boxSize;
 RCutOff = rCutOff;
 RCutOffSquared = rCutOff * rCutOff;

 Positions = new Vector3D[Particles];
 for (int i = 0; i < Particles; i++)
 {
 Positions[i] = Vector3D.ZeroVector();
 }

 UniformRandom = new Random(randomSeed);
 RandomMovementRange = randomMovementRange;
 RandomMovementFactor = Math.Sqrt(RandomMovementRange * RandomMovementRange / 3.0);

 DiscretizationResolution = discretizationResolution;
 DiscretizationDeltaR = RCutOff / DiscretizationResolution;

 PotentialFunction = new double[DiscretizationResolution][];
 for (int i = 0; i < DiscretizationResolution; i++)
 {
 PotentialFunction[i] = new double[2];

72

 }

 RNeighborSearch = RCutOff + 3 * RandomMovementRange;
 RNeighborSearchSquared = RNeighborSearch * RNeighborSearch;
 NeighborMatrix = new bool[Particles, Particles];

 RadialDistributionBins = new int[DiscretizationResolution];
 RadialDistributionNFactor = (2.0 * BoxSize * BoxSize * BoxSize) / (Particles * Particles * 4.0
* Math.PI * DiscretizationDeltaR);
 RadialDistribution = new double[DiscretizationResolution][];
 double r = DiscretizationDeltaR / 2.0;
 for (int i = 0; i < DiscretizationResolution; i++)
 {
 RadialDistribution[i] = new double[2];
 RadialDistribution[i][0] = r;
 r += DiscretizationDeltaR;
 }
 }

 private void MetropolisStep(int steps)
 {
 int randomIndex;
 Vector3D testDisplacement;
 Vector3D testPosition;
 double potential;
 double testPotential;
 double deltaPotential;

 for (int s = 0; s < steps; s++)
 {
 randomIndex = UniformRandom.Next(Particles);
 potential = NeighborsPotential(randomIndex, Positions[randomIndex]);

 testDisplacement = new Vector3D((-1 + UniformRandom.NextDouble() * 2) *
RandomMovementFactor, (-1 + UniformRandom.NextDouble() * 2) * RandomMovementFactor, (-1 +
UniformRandom.NextDouble() * 2) * RandomMovementFactor);
 testPosition = Positions[randomIndex].Copy();
 testPosition.Add(testDisplacement);
 testPotential = NeighborsPotential(randomIndex, testPosition);

 deltaPotential = testPotential - potential;
 if (deltaPotential < 0)
 {
 Positions[randomIndex] = testPosition;
 UpdateNeighbors(randomIndex, testDisplacement);
 }
 else if (UniformRandom.NextDouble() < Math.Exp(-deltaPotential))
 {
 Positions[randomIndex] = testPosition;
 UpdateNeighbors(randomIndex, testDisplacement);
 }

 }

 UpdateMeasurements();
 }

 public void SetPositionsAndPotential(double[][] positions, double[][] potentialFunction)
 {
 Vector3D rij;

 for (int i = 0; i < Particles; i++)
 {
 Positions[i].SetComponents(positions[i]);
 }

 for (int i = 0; i < DiscretizationResolution; i++)
 {
 PotentialFunction[i][0] = potentialFunction[i][0];
 PotentialFunction[i][1] = DecodeNETLinkArgument(potentialFunction[i][1]);
 }

 //Neighbor matrix
 for (int i = 0; i < Particles; i++)
 {
 for (int j = 0; j < i; j++)
 {
 rij = Positions[i] - Positions[j];
 NearestImageTransform(ref rij);

 if (rij.SizeSquared < RNeighborSearchSquared)
 {
 NeighborMatrix[i, j] = true;
 NeighborMatrix[j, i] = true;
 }
 else
 {

73

 NeighborMatrix[i, j] = false;
 NeighborMatrix[j, i] = false;
 }

 }
 }

 UpdateMeasurements();
 }

 public void RunMetropolis(int steps)
 {
 ProgressUpdate(1, 0.0001, 0, PotentialEnergy, RadialDistributionFunction);
 Abort = false;

 int innersteps = 200;
 double outersteps = steps / (double)innersteps;
 for (int i = 0; i < outersteps; i++)
 {
 if (Abort)
 break;

 MetropolisStep(innersteps);

 if (i % 10 == 0)
 ProgressUpdate(1, (i + 1) / outersteps, (i + 1) * innersteps, PotentialEnergy,
RadialDistributionFunction);
 }

 }

 private void NearestImageTransform(ref Vector3D v)
 {
 //if (Math.Abs(v.X) > BoxSizeOverTwo)
 // v.X -= Math.Sign(v.X) * BoxSize;
 //if (Math.Abs(v.Y) > BoxSizeOverTwo)
 // v.Y -= Math.Sign(v.Y) * BoxSize;
 //if (Math.Abs(v.Z) > BoxSizeOverTwo)
 // v.Z -= Math.Sign(v.Z) * BoxSize;
 v.X -= BoxSize * Math.Round(v.X / BoxSize);
 v.Y -= BoxSize * Math.Round(v.Y / BoxSize);
 v.Z -= BoxSize * Math.Round(v.Z / BoxSize);
 }

 private void UpdateNeighbors(int index, Vector3D displacement)
 {
 Vector3D rij;
 bool neighbors;

 //if (displacement.Size > ((RNeighborSearch - RCutOff) / 2))
 //{
 for (int j = 0; j < Particles; j++)
 {
 if (j != index)
 {
 rij = Positions[index] - Positions[j];
 NearestImageTransform(ref rij);

 neighbors = (rij.SizeSquared < RNeighborSearchSquared);
 NeighborMatrix[index, j] = neighbors;
 NeighborMatrix[j, index] = neighbors;

 //if (rij.SizeSquared < RNeighborSearchSquared)
 //{
 // NeighborMatrix[index, j] = true;
 // NeighborMatrix[j, index] = true;
 //}
 //else
 //{
 // NeighborMatrix[index, j] = false;
 // NeighborMatrix[j, index] = false;
 //}

 }
 }
 //}
 }

 private void UpdateMeasurements()
 {
 Vector3D rij;
 double RadialDistributionBinIndex;
 RadialDistributionBins = new int[DiscretizationResolution];

 TotalPotential = 0;
 for (int i = 0; i < Particles; i++)
 {

74

 for (int j = 0; j < i; j++)
 {
 //if (NeighborMatrix[i, j])
 //{
 rij = Positions[i] - Positions[j];
 NearestImageTransform(ref rij);

 //Neighbor list
 if (rij.SizeSquared < RCutOffSquared)
 {
 TotalPotential += PairPotential(rij.Size);
 }

 //Radial distribution function
 RadialDistributionBinIndex = (rij.Size / DiscretizationDeltaR);

 if (RadialDistributionBinIndex < DiscretizationResolution)
 RadialDistributionBins[(int)RadialDistributionBinIndex]++;
 //}
 }
 }

 for (int i = 0; i < DiscretizationResolution; i++)
 RadialDistribution[i][1] = (RadialDistributionNFactor * RadialDistributionBins[i]) /
(RadialDistribution[i][0] * RadialDistribution[i][0]);
 }

 private double PairPotential(double r)
 {
 double i = r / DiscretizationDeltaR;

 if (i >= DiscretizationResolution)
 return 0;

 return PotentialFunction[(int)i][1];
 }

 public double[][] RadialDistributionFunction
 {
 get
 {
 return RadialDistribution;
 }
 }

 public double PotentialEnergy
 {
 get
 {
 return TotalPotential;
 }
 }

 private double NeighborsPotential(int index, Vector3D position)
 {
 double ret = 0;
 Vector3D rij;

 for (int j = 0; j < Particles; j++)
 {
 if (NeighborMatrix[index, j])
 {
 rij = position - Positions[j];
 NearestImageTransform(ref rij);
 ret += PairPotential(rij.Size);
 }
 }

 return ret;
 }

 public void InverseMonteCarloSample(int steps, ref double[] s, ref double[][] j, ref double[][]
rdf)
 {
 ProgressUpdate(2, 0.0001, 0, PotentialEnergy, RadialDistributionFunction);

 for (int a = 0; a < DiscretizationResolution; a++)
 {
 s[a] = 0;

 for (int g = 0; g < DiscretizationResolution; g++)
 {
 j[a][g] = 0;
 }
 }

75

 int innersteps = 100;
 double outersteps = steps / (double)innersteps;
 for (int i = 0; i < outersteps; i++)
 {
 if (Abort)
 break;

 MetropolisStep(innersteps);

 for (int a = 0; a < DiscretizationResolution; a++)
 {
 s[a] += RadialDistributionBins[a];

 for (int g = 0; g < DiscretizationResolution; g++)
 {
 j[a][g] += RadialDistributionBins[a] * RadialDistributionBins[g];
 }
 }

 if (i % 10 == 0)
 ProgressUpdate(2, (i + 1) / outersteps, (i + 1) * innersteps, PotentialEnergy,
RadialDistributionFunction);
 }

 double r = DiscretizationDeltaR / 2.0;
 for (int a = 0; a < DiscretizationResolution; a++)
 {
 s[a] /= outersteps;

 rdf[a][0] = r;
 rdf[a][1] = (RadialDistributionNFactor * s[a]) / (rdf[a][0] * rdf[a][0]);
 r += DiscretizationDeltaR;
 }

 for (int a = 0; a < DiscretizationResolution; a++)
 {
 for (int g = 0; g < DiscretizationResolution; g++)
 {
 j[a][g] /= outersteps;
 j[a][g] = -(j[a][g] - s[a] * s[g]);
 }
 }

 }

 private double DecodeNETLinkArgument(double a)
 {
 if (a == 2010.1980)
 return double.PositiveInfinity;
 else if (a == 2010.1981)
 return double.NegativeInfinity;
 else
 return a;
 }

 public double Test(double d)
 {
 return DecodeNETLinkArgument(d);
 }
 }
}

Inverse Monte Carlo

The MCEngine class is called in a Mathematica implementation of the inverse Monte Carlo
procedure (Section 3.2.1).

Language: Mathematica

(*.NET/Link*)

Needs["NETLink`"];
InstallNET[];
LoadNETAssembly["AtilimGunesBaydin.Physics.ParticleSimulation.dll"];

encodeNETLinkArgument[a_] :=
 a /. {\[Infinity] -> 2010.1980, -\[Infinity] -> 2010.1981};

progressUpdateHandler[mode_, p_, s_, pe_, rdf_] := Module[{},
 If[mode == 1,
 mceProgress = p;

76

 mcStep = s;,
 mcsProgress = p;
 mcStep = mcEquilibrationSteps + s;
];
 potentialEnergy = pe;
 AppendTo[potentialEnergyHistory, {mcStep, potentialEnergy}];
 AppendTo[mcRDFHistory, rdf];
 FinishDynamic[];
 mcEngine@Abort = abort;
];

(*Initialize and run*)

initialize[] := Module[{},
 x = If[d == 3,
 Flatten[Table[{xx, yy, zz}, {xx, 0., l - (l/n^(1./3)),
 l/n^(1./3)}, {yy, 0., l - (l/n^(1./3)), l/n^(1./3)}, {zz, 0.,
 l - (l/n^(1./3)), l/n^(1./3)}], 2],
 Flatten[Table[{xx, yy, 0.}, {xx, 0., l - (l/Sqrt[n]),
 l/Sqrt[n]}, {yy, 0., l - (l/Sqrt[n]), l/Sqrt[n]}], 1]];
 (*x[[1]]+=l/1000.;*)
 (*Do[x[[i,j]]+=RandomReal[{0,rc/2.}],{i,n},{j,d}];*)
 potential =
 Table[{targetRDF[[i, 1]], -Log[targetRDF[[i, 2]]]}, {i, 1,
 Length[targetRDF]}];
 (*potential=Table[{targetRDF[[i,1]],1.5-i(targetRDF[[2,1]]-
 targetRDF[[1,1]])},{i,1,Length[targetRDF]}];*)
 (*potential=Table[{targetRDF[[i,1]],If[targetRDF[[i,2]]==
 0,\[Infinity],0]},{i,Length[targetRDF]}];*)
 (*potential=tmpu;*)
 mcEngine =
 NETNew["AtilimGunesBaydin.Physics.ParticleSimulation.MCEngine", Floor[n], l, rc,
 Length[potential], rc/10, 1500];
 AddEventHandler[mcEngine@ProgressUpdate, progressUpdateHandler];
 mcEngine@
 SetPositionsAndPotential[x, encodeNETLinkArgument[potential]];
 potentialEnergy = mcEngine@PotentialEnergy;
 potentialEnergyHistory = {{0, potentialEnergy}};
 mcRDFHistory = Table[mcEngine@RadialDistributionFunction, {100}];
 imcPotentialHistory = {potential};
 imcRDFHistory = {{{0, 0}, {0, 0}}};
 imcStep = 1; imcStep = 0;
 mcStep = 1; mcStep = 0;
 imcProgress = 10^-6;
 mceProgress = 10^-6;
 mcsProgress = 10^-6;
 running = False;
 abort = False;
 imcStatus = "";
];

loadRDF[fileName_] :=
 Module[{},
 If[fileName =!= $Canceled,
 targetRDFFile =
 StringDrop[fileName, StringLength[DirectoryName[fileName]]];
 targetRDF = Import[fileName, "Table"];
 rc = targetRDF[[-1, 1]] + ((
 targetRDF[[2, 1]] - targetRDF[[1, 1]])/2);,
 targetRDFFile = "<None>";]];

runIMC[imcs_, mces_, mcss_, \[Lambda]_] :=
 Module[{ss, targetss, \[Delta]ss, jj, zeros, jj2,
 rdf, \[Delta]pot, \[Delta]potsmooth},
 running = True;
 ss = Table[0, {Length[targetRDF]}];
 \[Delta]ss = Table[0, {Length[targetRDF]}];
 jj = Table[0, {Length[targetRDF]}, {Length[targetRDF]}];
 rdf = Table[{0, 0}, {Length[targetRDF]}];
 Do[
 x = If[d == 3,
 Flatten[Table[{xx, yy, zz}, {xx, 0., l - (l/n^(1./3)),
 l/n^(1./3)}, {yy, 0., l - (l/n^(1./3)), l/n^(1./3)}, {zz, 0.,
 l - (l/n^(1./3)), l/n^(1./3)}], 2],
 Flatten[Table[{xx, yy, 0.}, {xx, 0., l - (l/Sqrt[n]),
 l/Sqrt[n]}, {yy, 0., l - (l/Sqrt[n]), l/Sqrt[n]}], 1]];
 mcEngine@
 SetPositionsAndPotential[x, encodeNETLinkArgument[potential]];
 potentialEnergy = mcEngine@PotentialEnergy;
 potentialEnergyHistory = {{0, potentialEnergy}};
 mcRDFHistory = Table[mcEngine@RadialDistributionFunction, {100}];
 mcStep = 0;
 mcsProgress = 10^-6;
 imcStatus = " (Equilibration)";
 runMC[mces];
 mceProgress = 1;
 If[abort, abort = False; Break[];];

77

 imcStatus =
 " (Sampling <\!\(*SubscriptBox[\"S\", \"\[Alpha]\"]\)> and \
<\!\(*SubscriptBox[\"S\", \"\[Alpha]\"]\)\!\(*SubscriptBox[\"S\", \
\"\[Gamma]\"]\)>)";
 mcEngine@InverseMonteCarloSample[mcss, ss, jj, rdf];
 If[abort, abort = False; Break[];];
 imcStatus = " (Computing \[CapitalDelta]\[CapitalPhi])";
 targetss =
 Table[(n (n - 1))/(2 l^3)
 4 \[Pi] ((targetRDF[[\[Alpha], 1]])^2
 rc/(Length[targetRDF] - 1))
 targetRDF[[\[Alpha], 2]], {\[Alpha], Length[potential]}];
 \[Delta]ss = ss Plus @@ targetss/Plus @@ ss - targetss;
 zeros = Count[ss, 0.];
 jj2 = Table[Drop[jj[[i]], zeros], {i, zeros + 1, Length[jj]}];
 \[Delta]ss = Drop[\[Delta]ss, zeros];
 \[Delta]pot =
 Check[LinearSolve[jj2, \[Delta]ss],
 Table[0, {Length[\[Delta]ss]}]];
 \[Delta]potsmooth = smoothList[\[Delta]pot];
 \[Delta]potsmooth =
 PadLeft[\[Delta]potsmooth, Length[potential]];
 Do[potential[[i, 2]] =
 potential[[i, 2]] - \[Lambda] \[Delta]potsmooth[[i]], {i,
 Length[potential]}];
 AppendTo[imcPotentialHistory, potential];
 AppendTo[imcRDFHistory, rdf];
 imcStep++;
 imcProgress = imcStep/imcs;
 tmpss = ss;
 tmpjj = jj;
 tmprdf = rdf;
 tmptargetss = targetss;
 tmp\[Delta]ss = \[Delta]ss;
 tmpzeros = zeros;
 tmpjj2 = jj2;
 tmp\[Delta]pot = \[Delta]pot;
 tmp\[Delta]potsmooth = \[Delta]potsmooth;
 , {imcs}];
 imcStatus = "";
 running = False;
];

runMC[s_] :=
 Module[{}, running = True; startTime = AbsoluteTime[];
 startTimeStep = timeStep;
 mcEngine@RunMetropolis[s];
 finishTime = AbsoluteTime[]; running = False;];

Needs["Splines`"]

smoothList[list_] :=
 Module[{fit, y},
 fit[y_] =
 Fit[list, {1, y, y^2, y^3, y^4, y^5, y^6, y^7, y^8, y^9}, y];
 Table[fit[i], {i, Length[list]}]];

smoothList[list_] :=
 Module[{fit, y},
 fit = SplineFit[Table[{i, list[[i]]}, {i, Length[list]}], Bezier];
 Table[fit[i - 1][[2]], {i, Length[list]}]];

(*Visualization*)

showParticles3D[] :=
 Graphics3D[{Table[{Blue, Sphere[x[[i]], \[Sigma]/2]}, {i, n}]},
 PlotRange -> {{0, l}, {0, l}, {0, l}},
 PlotRangePadding -> \[Sigma]/2, BoxRatios -> {1, 1, 1},
 Axes -> True, AxesEdge -> {{-1, -1}, {-1, -1}, {-1, -1}},
 AxesLabel -> {"x", "y", "z"}, ImageSize -> 350];

showParticles2D[] := Graphics[{Table[{Blue,
 Reap[
 Sow[Disk[Take[x[[i]], 2], \[Sigma]/2]];
 If[x[[i, 1]] < \[Sigma]/2,
 Sow[Disk[Take[x[[i]], 2] + {l, 0}, \[Sigma]/2]];
 If[x[[i, 2]] < \[Sigma]/2,
 Sow[Disk[Take[x[[i]], 2] + {l, l}, \[Sigma]/2]];];
 If[l - x[[i, 2]] < \[Sigma]/2,
 Sow[Disk[Take[x[[i]], 2] + {l, -l}, \[Sigma]/2]];];];
 If[x[[i, 2]] < \[Sigma]/2,
 Sow[Disk[Take[x[[i]], 2] + {0, l}, \[Sigma]/2]];];
 If[l - x[[i, 1]] < \[Sigma]/2,
 Sow[Disk[Take[x[[i]], 2] + {-l, 0}, \[Sigma]/2]];
 If[x[[i, 2]] < \[Sigma]/2,
 Sow[Disk[Take[x[[i]], 2] + {-l, l}, \[Sigma]/2]];];
 If[l - x[[i, 2]] < \[Sigma]/2,

78

 Sow[Disk[Take[x[[i]], 2] + {-l, -l}, \[Sigma]/2]];];];
 If[l - x[[i, 2]] < \[Sigma]/2,
 Sow[Disk[Take[x[[i]], 2] + {0, -l}, \[Sigma]/2]];];
][[2]]}, {i, n}]}, PlotRange -> {{0, l}, {0, l}},
 PlotRangeClipping -> True, AspectRatio -> 1, Frame -> True,
 FrameLabel -> {"x", "y"}, ImageSize -> 350];

showParticles2DFast[] :=
 Graphics[{Table[{Blue, Disk[Take[x[[i]], 2], \[Sigma]/2],
 Disk[Take[x[[i]], 2] + If[x[[i, 1]] < \[Sigma]/2, {l, 0}, 0] +
 If[x[[i, 2]] < \[Sigma]/2, {0, l}, 0] +
 If[l - x[[i, 1]] < \[Sigma]/2, {-l, 0}, 0] +
 If[l - x[[i, 2]] < \[Sigma]/2, {0, -l}, 0], \[Sigma]/2]}, {i,
 n}]}, PlotRange -> {{0, l}, {0, l}}, PlotRangeClipping -> True,
 AspectRatio -> 1, Frame -> True, FrameLabel -> {"x", "y"},
 ImageSize -> 350];

manipulator[label_, {Dynamic[val_], init_}, range_,
 options___] := (val = init;
 Row[{Pane[label, 86, Alignment -> Right],
 InputField[Dynamic[val], ImageSize -> 50, options],
 Manipulator[Dynamic[val], range, ImageSize -> Tiny, options]},
 Spacer[1]]);

energyPlot[] :=
 Labeled[ListLinePlot[{Tooltip[potentialEnergyHistory,
 "Hamiltonian"]}, ImageSize -> {300, 200},
 AxesLabel -> {"step", "H"}, PlotRange -> All],
 StandardForm["Hamiltonian"]];

mcRDFPlot[] :=
 Labeled[ListLinePlot[(1/20) Plus @@ Take[mcRDFHistory, -20],
 PlotStyle -> {Darker[Green]}, ImageSize -> {300, 200},
 AxesLabel -> {"r", "g(r)"}, PlotRange -> {{0, rc}, All},
 Filling -> Bottom, FillingStyle -> LightGreen],
 StandardForm["Radial distribution function"]];

imcPotentialPlot[] :=
 Labeled[ListLinePlot[imcPotentialHistory, ImageSize -> {300, 200},
 AxesLabel -> {"r", "\[CapitalPhi](r)"},
 PlotRange -> {{0, rc}, {-1, 2}},
 PlotStyle ->
 Table[If[i == Length[imcPotentialHistory], Blue,
 Blend[{LightGray, Darker[Gray]},
 i/Length[imcPotentialHistory]]], {i,
 Length[imcPotentialHistory]}]],
 StandardForm["Effective potential"]]

imcRDFPlot[] :=
 Labeled[Show[
 ListLinePlot[targetRDF, PlotStyle -> {Thick, Red},
 PlotRange -> All],
 ListLinePlot[imcRDFHistory,
 PlotStyle ->
 Table[If[i == Length[imcRDFHistory], Blue,
 Blend[{LightGray, Darker[Gray]}, i/Length[imcRDFHistory]]], {i,
 Length[imcRDFHistory]}], PlotRange -> All],
 ImageSize -> {300, 200}, AxesLabel -> {"r", "g(r)"},
 PlotRange -> {All, {0, 3}}], StandardForm["Target RDF"]]

(*Experiment*)

experimentPanel[] :=
 Module[{}, targetRDFFile = "<None>";
 targetRDF = Table[{0, 0}, {10}]; visualization = "Plots"; d = 3;
 n = 1000; rc = 2.5; labmda = 0.75; initialize[]; Panel[Row[{
 Column[{
 Style["Inverse Monte Carlo", Bold, Medium],
 Row[{Pane["Target RDF", 86, Alignment -> Right],
 Dynamic[Labeled[
 ListLinePlot[targetRDF, ImageSize -> 130,
 AspectRatio -> 0.5, PlotRange -> {{0, rc}, {0, 3.5}},
 AxesLabel -> {"r", "g(r)"}], targetRDFFile]]},
 Spacer[1]],
 Row[{Pane["Resolution", 86, Alignment -> Right],
 InputField[Dynamic[Length[potential]], ImageSize -> 50,
 Enabled -> False]}, Spacer[1]],
 Row[{Spacer[90],
 Button["Load...",
 loadRDF[
 SystemDialogInput["FileOpen",
 "Data from Johan\\Scaled\\Dimensionless\\"]]; initialize[];, Method -> "Queued",
 ImageSize -> 70]}],
 manipulator[
 "\[Lambda]", {Dynamic[lambda], 0.1}, {0, 1, 0.05}],
 , Style["Simulation parameters", Bold, Medium],
 manipulator[

79

 "\!\(*SubscriptBox[\"r\", \"cutoff\"]\)", {Dynamic[rc],
 2.5}, {1, 10, 0.01}, Enabled -> False],
 Row[{Pane["Dimensions (d)", 86, Alignment -> Right],
 SetterBar[Dynamic[d], {2, 3},
 Enabled -> Dynamic[! running]]}, Spacer[1]],
 manipulator[
 "Box size (L)", {Dynamic[l], 8}, {Dynamic[2 rc], 40, 0.1},
 Enabled -> Dynamic[! running]],
 Row[{Spacer[90],
 Dynamic["(must be > 2\!\(*SubscriptBox[\"r\",
RowBox[{\"cutoff\", \" \"}]]\)= " <> ToString[Round[rc 2, 0.001]] <>
 ToString[")"]]}],
 manipulator["Particles (N)", {Dynamic[n], 512},
 Dynamic[{Table[i^d, {i, Evaluate[Floor[3400^(1/d)]]}]}],
 Enabled -> Dynamic[! running]],
 Row[{Pane["\[Rho]", 86, Alignment -> Right],
 InputField[Dynamic[Round[n/l^d, 0.001]], ImageSize -> 50,
 Enabled -> False],
 Pane["(N/\!\(*SuperscriptBox[\"L\", \"d\"]\))"]},
 Spacer[1]],
 , Style["Visualization", Bold, Medium],
 Row[{Spacer[86],
 SetterBar[
 Dynamic[visualization], {"None", "Plots", "Particles"}]},
 Spacer[1]],
 \!\(*
GraphicsBox[
{GrayLevel[0.5], AbsoluteThickness[1], LineBox[{{0, 0.5}, {1, 0.5}}]},

ImageSize->{210., Automatic},
PlotRange->{{0, 1}, {0.49, 0.51}}]\),
 manipulator["IMC Steps", {Dynamic[imcSteps], 3}, {0, 1000, 2},
 Enabled -> Dynamic[! running]],
 manipulator[
 "MC Equi. Steps", {Dynamic[mcEquilibrationSteps],
 300000}, {0, 50000, 50}, Enabled -> Dynamic[! running]],
 manipulator[
 "MC Smp. Steps", {Dynamic[mcSamplingSteps], 100000}, {0,
 5000, 25}, Enabled -> Dynamic[! running]],
 Row[{Spacer[90],
 Button["Initialize", initialize[];, ImageSize -> 70]}],
 Row[{Spacer[90],
 Button["Start", abort = False;
 runIMC[imcSteps, mcEquilibrationSteps, mcSamplingSteps,
 lambda];, Method -> "Queued", ImageSize -> 70]}],
 Row[{Spacer[90],
 Button["Stop", abort = True;, Method -> "Preemptive",
 ImageSize -> 70]}],
 }, BaselinePosition -> Top],
 Column[{
 Dynamic[Refresh[Panel[
 Column[{

 Grid[{{"IMC step", " : " <> ToString[imcStep]}},
 Alignment -> Left, ItemSize -> {{{9, 14}}}], ,

 Column[{Row[{imcPotentialPlot[], Spacer[15],
 imcRDFPlot[]}], Row[{Spacer[15]}]}]
 }],
 ImageSize -> {650, Automatic},
 BaseStyle -> "StandardForm"],
 TrackedSymbols -> {imcStep, imcStatus, imcPotentialHistory,
 imcRDFHistory}]],
 Dynamic[
 Refresh[Row[{Column[{ProgressIndicator[imcProgress,
 ImageSize -> 150],
 ToString[Round[100. imcProgress, 0.1]] <> "%"},
 BaseStyle -> "StandardForm"]}],
 TrackedSymbols -> {imcProgress}]],
 Dynamic[Refresh[Panel[
 Column[{

 Grid[{{"MC step",
 " : " <> ToString[mcStep]}, {"Potential en.",
 " : " <> ToString[potentialEnergy]}},
 Alignment -> Left, ItemSize -> {{{9, 14}}}], ,

 Column[{Row[{energyPlot[], Spacer[15], mcRDFPlot[]}],
 Row[{Spacer[15]}]}]
 }],
 ImageSize -> {650, Automatic},
 BaseStyle -> "StandardForm"],
 TrackedSymbols -> {mcStep}]],
 Dynamic[
 Refresh[Row[{Column[{ProgressIndicator[mceProgress,
 ImageSize -> 150],
 ToString[Round[100. mceProgress, 0.1]] <> "%"},

80

 BaseStyle -> "StandardForm"],
 Column[{ProgressIndicator[mcsProgress, ImageSize -> 150],
 ToString[Round[100. mcsProgress, 0.1]] <> "%"},
 BaseStyle -> "StandardForm"],
 Column[{imcStatus}, BaseStyle -> "StandardForm"]}],
 TrackedSymbols -> {mceProgress, mcsProgress}]]
 }, BaselinePosition -> Top]
 }, Spacer[10]], ImageSize -> {930, Automatic}]];

Genetic algorithms
Base implementation

The abstract GeneticAlgorithms class contains the base implementation of the standard
genetic algotrithm (Section 4.1.1).

Language: C#

using System;
using System.Drawing;
using System.Threading;
using System.Collections;
using System.Text;
using gbp.Drawing.Graph;

namespace AtilimGunesBaydin.AI.GeneticAlgorithms
{
 public abstract class GeneticAlgorithms
 {
 private Individual[] Individuals;
 private int Size;
 private int GenomeLength;
 private double GeneMinimum;
 private double GeneMaximum;

 private int Generations;
 private float CrossoverChance;
 private float MutationChance;
 private int TournamentSize;
 private float TournamentChance;
 private bool Elitism;
 private float FitnessTreshold;
 private ImprovementDelegate Improvement;
 private StoppedDelegate Stopped;
 private Graphics GStatus;
 private Bitmap GStatusBuffer;
 private Graphics GStatusBufferG;
 protected Graphics GProgress;
 protected Bitmap GProgressBuffer;
 protected Graphics GProgressBufferG;
 protected Graphics GFitness;
 protected Bitmap GFitnessBuffer;
 protected Graphics GFitnessBufferG;
 protected Color BackColor;
 protected Brush ForeColor1;
 protected Brush ForeColor2;
 private Thread T;
 private bool Abort;
 private bool ShowEval;
 private bool ShowImprove;
 protected Font f;
 private Font f2;
 private Individual AllTimeBest;
 private float AverageRawFitness;
 private float Diversity;
 protected bool IndividualsDrawn;
 private Random rnd;
 private bool[,] IdenticalMatrix;

 public GeneticAlgorithms(int size, int genomeLength, double geneMinimum, double geneMaximum, int
generations, float crossoverChance, float mutationChance, int tournamentSize, float tournamentChance, bool
elitism, float fitnessTreshold, ImprovementDelegate improvement, StoppedDelegate stopped, Graphics gStatus,
Bitmap gStatusBuffer, Graphics gProgress, Bitmap gProgressBuffer, Graphics gFitness, Bitmap gFitnessBuffer,
Color backColor, Color foreColor1, Color foreColor2)
 {
 rnd = new Random();
 Size = size;
 GenomeLength = genomeLength;
 GeneMinimum = geneMinimum;
 GeneMaximum = geneMaximum;

81

 Individuals = new Individual[Size];
 for (int i = 0 ; i < Size ; i++)
 {
 Individuals[i] = new Individual(GenomeLength);
 for (int n = 0 ; n < GenomeLength ; n++)
 Individuals[i].Genome[n] = (float)(GeneMinimum + rnd.NextDouble() * (GeneMaximum -
GeneMinimum));
 }

 Generations = generations;
 CrossoverChance = crossoverChance;
 MutationChance = mutationChance;
 TournamentSize = tournamentSize;
 TournamentChance = tournamentChance;
 Elitism = elitism;
 FitnessTreshold = fitnessTreshold;
 Improvement = improvement;
 Stopped = stopped;
 GStatus = gStatus;
 GProgress = gProgress;
 GFitness = gFitness;
 GStatusBuffer = gStatusBuffer;
 GProgressBuffer = gProgressBuffer;
 GFitnessBuffer = gFitnessBuffer;
 GStatusBufferG = Graphics.FromImage(GStatusBuffer);
 GProgressBufferG = Graphics.FromImage(GProgressBuffer);
 GFitnessBufferG = Graphics.FromImage(GFitnessBuffer);
 GStatusBufferG.SmoothingMode = System.Drawing.Drawing2D.SmoothingMode.HighQuality;
 GProgressBufferG.SmoothingMode = System.Drawing.Drawing2D.SmoothingMode.HighQuality;
 GFitnessBufferG.SmoothingMode = System.Drawing.Drawing2D.SmoothingMode.HighQuality;
 BackColor = backColor;
 ForeColor1 = new SolidBrush(foreColor1);
 ForeColor2 = new SolidBrush(foreColor2);
 f = new Font("Arial", 8);
 f2 = new Font("Arial", 20, FontStyle.Bold);
 ShowEval = true;
 ShowImprove = true;

 IdenticalMatrix = new bool[Size, Size];
 for (int i = 0; i < Size; i++)
 IdenticalMatrix[i, i] = true;

 AllTimeBest = new Individual(GenomeLength);
 AllTimeBest.RawFitness = 10000000;
 }

 public void SetIndividual(int index, float[] genome)
 {
 for (int n = 0; n < GenomeLength; n++)
 Individuals[index].Genome[n] = genome[n];
 }

 public void NextGeneration2()
 {
 int newindividuals = Size / 2;
 int crossovers = (int)(newindividuals * CrossoverChance / 2);
 int reproductions = newindividuals - 2 * crossovers;

 int pos = Size - newindividuals;
 for (int i = 0 ; i < crossovers ; i++)
 {
 Individual[] children = Crossover(Individuals[AGoodChromosomeIndex()],
Individuals[AGoodChromosomeIndex()]);
 Individuals[pos++] = Mutate(children[0]);
 Individuals[pos++] = Mutate(children[1]);
 }
 for (int i = 0 ; i < reproductions ; i++)
 {
 Individuals[pos++] = Mutate(Individuals[AGoodChromosomeIndex()]);
 }
 }

 public void NextGeneration()
 {
 Individual[] ng = new Individual[Size];

 int crossovers = (int)(Size * CrossoverChance / 2);
 int reproductions = Size - 2 * crossovers;

 int pos = 0;
 for (int i = 0 ; i < crossovers ; i++)
 {
 Individual[] children = Crossover(Individuals[AGoodChromosomeIndex()],
Individuals[AGoodChromosomeIndex()]);
 ng[pos++] = Mutate(children[0]);
 ng[pos++] = Mutate(children[1]);
 }

82

 for (int i = 0 ; i < reproductions ; i++)
 {
 ng[pos++] = Mutate(Individuals[AGoodChromosomeIndex()]);
 }

 if (Elitism)
 ng[0] = AllTimeBest;

 Individuals = ng;
 }

 private int AGoodChromosomeIndex()
 {
 int ret = rnd.Next(Size);
 int participant;
 for (int i = 0 ; i < TournamentSize - 1 ; i++)
 {
 participant = rnd.Next(Size);
 if (Individuals[participant].Fitness <= Individuals[ret].Fitness)
 if (TournamentChance > rnd.NextDouble())
 ret = participant;
 }
 return ret;
 }

 private Individual[] Crossover(Individual parent1, Individual parent2)
 {
 Individual[] children = new Individual[2];
 children[0] = new Individual(GenomeLength);
 children[1] = new Individual(GenomeLength);
 int cut1 = rnd.Next(GenomeLength);
 int cut2 = rnd.Next(cut1, GenomeLength);
 for (int i = 0 ; i < cut1 ; i++)
 {
 children[0].Genome[i] = parent1.Genome[i];
 children[1].Genome[i] = parent2.Genome[i];
 }
 for (int i = cut1 ; i <= cut2 ; i++)
 {
 children[0].Genome[i] = parent2.Genome[i];
 children[1].Genome[i] = parent1.Genome[i];
 }
 for (int i = cut2 + 1; i < GenomeLength ; i++)
 {
 children[0].Genome[i] = parent1.Genome[i];
 children[1].Genome[i] = parent2.Genome[i];
 }
 return children;
 }

 private Individual Mutate(Individual i)
 {
 Individual ret = new Individual(GenomeLength);
 for (int g = 0 ; g < GenomeLength ; g++)
 {
 ret.Genome[g] = i.Genome[g];
 if (rnd.NextDouble() < MutationChance)
 {
 ret.Genome[g] *= (float)(0.5 + 1.0 * rnd.NextDouble());
 //ret.Genome[g] = (float)(GeneMinimum + rnd.NextDouble() * (GeneMaximum -
GeneMinimum));

 //ret.Genome[g] = (float)Math.Max(Math.Min(GeneMaximum, ret.Genome[g]), GeneMinimum);
 }
 }
 return ret;
 }

 internal bool IsEqual(float[] individual1, float[] individual2)
 {
 for (int i = 0 ; i < GenomeLength ; i++)
 if (individual1[i] != individual2[i])
 return false;
 return true;
 }

 internal string ArrayToString(float[] a)
 {
 StringBuilder b = new StringBuilder();
 for (int i = 0; i < a.Length; i++)
 {
 b.Append(a[i]);
 if (i < a.Length - 1)
 b.Append(", ");
 }

83

 return b.ToString();
 }

 public void Evolve()
 {
 Abort = false;
 T = new Thread(new ThreadStart(Run));
 T.Start();
 }

 public void Stop()
 {
 Abort = true;
 }

 public bool ShowEvaluation
 {
 get
 {
 return ShowEval;
 }
 set
 {
 ShowEval = value;
 }
 }

 public bool ShowImprovements
 {
 get
 {
 return ShowImprove;
 }
 set
 {
 ShowImprove = value;
 }
 }

 private void Run()
 {
 DateTime start = DateTime.Now;

 GStatusBufferG.Clear(BackColor);
 GStatusBufferG.DrawString("GeneticAlgorithms Environment initializing...", f, ForeColor1, 0,
0);
 GStatusBufferG.DrawString("Started " + start.ToString(), f, ForeColor2, 0, 10);
 GStatusBufferG.DrawString("Population size: " + Size.ToString(), f, ForeColor2, 0, 20);
 GStatusBufferG.DrawString("Crossover prob.: " + CrossoverChance.ToString(), f, ForeColor2, 0,
30);
 GStatusBufferG.DrawString("Mutation prob.: " + MutationChance.ToString(), f, ForeColor2, 0,
40);
 GStatus.DrawImage(GStatusBuffer, 0, 0);
 Graph2D gfitness = new Graph2D(2, GStatusBufferG, new RectangleF(240, 5, 160, 120), BackColor,
Color.DarkOrange);
 gfitness.SetComponent(0, "Average raw fitness", Color.Orange);
 gfitness.SetComponent(1, "Best raw fitness", Color.Yellow);
 GraphHistogram ghistogram = new GraphHistogram("Raw fitness distribution", 15, GStatusBufferG,
new RectangleF(420, 5, 160, 120), BackColor, Color.DarkOrange, Color.DarkOrange);

 for (int g = 0 ; g < Generations && !Abort ; g++)
 {
 GProgressBufferG.Clear(BackColor);
 GProgressBufferG.DrawString("GENERATION " + g.ToString(), f2, ForeColor1, 0, 0);
 GProgress.DrawImage(GProgressBuffer, 0, 0);

 GiveFitnesses(g);
 if (Abort)
 break;

 GStatusBufferG.Clear(BackColor);

 GStatusBufferG.DrawString("GeneticAlgorithms Environment running...", f, ForeColor1, 0, 0);
 GStatusBufferG.DrawString("Started " + start.ToString(), f, ForeColor2, 0, 10);
 GStatusBufferG.DrawString("Population size: " + Size.ToString(), f, ForeColor2, 0, 20);
 GStatusBufferG.DrawString("Crossover prob.: " + CrossoverChance.ToString(), f, ForeColor2,
0, 30);
 GStatusBufferG.DrawString("Mutation prob.: " + MutationChance.ToString(), f, ForeColor2, 0,
40);
 GStatusBufferG.DrawString("Generation " + g.ToString() + ":", f, ForeColor1, 0, 60);
 GStatusBufferG.DrawString("Average raw fitness: " + AverageRawFitness.ToString(), f,
ForeColor2, 0, 70);
 GStatusBufferG.DrawString("Diversity: " + Diversity.ToString(), f, ForeColor2, 0, 80);
 GStatusBufferG.DrawString("Best individual", f, ForeColor1, 0, 120);
 GStatusBufferG.DrawString("Raw fitness: " + AllTimeBest.RawFitness.ToString(), f,
ForeColor2, 0, 130);

84

 GStatusBufferG.DrawString("Fitness: " + AllTimeBest.Fitness.ToString(), f, ForeColor2, 0,
140);

 gfitness.AddValue(0, AverageRawFitness);
 gfitness.AddValue(1, AllTimeBest.RawFitness);
 gfitness.Draw();

 float[] rawfitnesses = new float[Size];
 for (int i = 0 ; i < Size ; i++)
 rawfitnesses[i] = Individuals[i].RawFitness;

 ghistogram.SetValues(rawfitnesses);
 ghistogram.Draw();

 GStatus.DrawImage(GStatusBuffer, 0, 0);

 //Improvement(AllTimeBest.Genome, g, Representation(Individuals[BestIndex].Genome));
 if (AllTimeBest.RawFitness <= FitnessTreshold)
 {
 break;
 }

 NextGeneration();
 }

 GProgressBufferG.Clear(BackColor);
 GProgress.DrawImage(GProgressBuffer, 0, 0);
 Stopped();
 }

 private void GiveFitnesses(int generation)
 {
 float rawfitnessestotal = 0;
 for (int i = 0; (i < Size) && !Abort; i++)
 {
 GProgressBufferG.DrawLine(Pens.Orange, 0, 30, (225f * (i + 1) / Size), 30);
 GProgress.DrawImage(GProgressBuffer, 0, 0);

 if (!Individuals[i].FitnessGiven)
 {
 Individuals[i].RawFitness = Fitness(Individuals[i].Genome, i, ShowEval);
 Individuals[i].FitnessGiven = true;
 }

 rawfitnessestotal += Individuals[i].RawFitness;

 if (Individuals[i].RawFitness < AllTimeBest.RawFitness)
 {
 AllTimeBest = Individuals[i].Copy();
 Improvement(Individuals[i].Genome, generation, Individuals[i].RawFitness,
Representation(i));
 if ((!ShowEval) && ShowImprove)
 Fitness(AllTimeBest.Genome, i, true);
 }

 }
 if (Abort)
 return;

 AverageRawFitness = rawfitnessestotal / Size;
 Array.Sort(Individuals);

 bool unique;
 float uniques = 0;
 for (int i = 0 ; i < Size ; i++)
 {
 Individuals[i].Fitness = Individuals[i].RawFitness / rawfitnessestotal;

 unique = true;
 for (int p = 0 ; p < i ; p++)
 if (IsEqual(Individuals[i].Genome, Individuals[p].Genome))
 {
 unique = false;
 IdenticalMatrix[i, p] = true;
 IdenticalMatrix[p, i] = true;
 //break;
 }
 if (unique)
 uniques++;
 }
 Diversity = uniques / Size;
 }

 public abstract float Fitness(float[] individual, int index, bool showEvaluation);
 //public abstract void DrawIndividual(float[] individual, Graphics g, RectangleF position);
 public abstract object[] Representation(int index);

85

 private class Individual : IComparable
 {
 public float[] Genome;
 public float RawFitness;
 public float Fitness;
 public bool FitnessGiven;

 public Individual(int genomeLength)
 {
 Genome = new float[genomeLength];
 RawFitness = 0;
 Fitness = 0;
 FitnessGiven = false;
 }

 public int CompareTo(object obj)
 {
 if (obj is Individual)
 {
 Individual i = (Individual)obj;
 return RawFitness.CompareTo(i.RawFitness);
 }
 return -1;
 }

 public Individual Copy()
 {
 Individual ret = new Individual(Genome.Length);
 for (int i = 0; i < Genome.Length; i++)
 {
 ret.Genome[i] = Genome[i];
 }
 ret.RawFitness = RawFitness;
 ret.Fitness = Fitness;
 ret.FitnessGiven = true;

 return ret;
 }

 }
 }

 public delegate void ImprovementDelegate(float[] solution, int generation, double fitness, object[]
representation);
 public delegate void StoppedDelegate();
}

DPD

The classes DPDGAConservative and DPDGADissipative inherit the base class
GeneticAlgorithms to define the decoding scheme and fitness evaluations for the
determination of conservative and dissipative DPD interactions.

Language: C#

using System;
using System.Drawing;
using System.Threading;
using System.Collections;
using System.Text;
using AtilimGunesBaydin.Drawing.Graph;
using AtilimGunesBaydin.Physics.ParticleSimulation;

namespace AtilimGunesBaydin.AI.GeneticAlgorithms
{
 public class DPDGAConservative : gbp.AI.GeneticAlgorithms.GeneticAlgorithms
 {
 private DPDEngineDiscretizedOmega DPD;

 private int Particles;
 private double BoxSize;
 private double DeltaT;
 private double R0;
 private double RCutoff;
 private double Skin;
 private double Sigma;
 private double RPotentialEnd;
 private int DiscretizationResolution;

86

 private double[][] InitialPositions;
 private double[][] InitialVelocities;
 private double[][] Omega;
 private double[][] TargetRDF;

 private int InitSteps;
 private int SamplingSteps;

 private int DiffusionCoefficientTimeSteps;
 private int RDFZeros;

 private gbp.MathematicaLink.MathematicaLink ML;

 private double[][][] EvaluatedPotentials;
 private double[][][] EvaluatedRDFs;

 public DPDGAConservative(int size, double geneMinimum, double geneMaximum, int generations, float
crossoverChance, float mutationChance, int tournamentSize, float tournamentChance, bool elitism, float
fitnessTreshold, gbp.AI.GeneticAlgorithms.ImprovementDelegate improvement,
gbp.AI.GeneticAlgorithms.StoppedDelegate stopped, Graphics gStatus, Bitmap gStatusBuffer, Graphics
gProgress, Bitmap gProgressBuffer, Graphics gFitness, Bitmap gFitnessBuffer, int particles, double boxSize,
double deltaT, double r0, double rCutoff, double skin, double sigma, double rPotentialEnd, int
discretizationResolution, double[][] omega, double[][] targetRDF, int initSteps, int samplingSteps,
gbp.MathematicaLink.MathematicaLink ml)
 : base(size, discretizationResolution, geneMinimum, geneMaximum, generations, crossoverChance,
mutationChance, tournamentSize, tournamentChance, elitism, fitnessTreshold, improvement, stopped, gStatus,
gStatusBuffer, gProgress, gProgressBuffer, gFitness, gFitnessBuffer, Color.Black, Color.Orange,
Color.DarkOrange)
 {
 Particles = particles;
 BoxSize = boxSize;
 DeltaT = deltaT;
 R0 = r0;
 RCutoff = rCutoff;
 Skin = skin;
 Sigma = sigma;
 RPotentialEnd = rPotentialEnd;
 DiscretizationResolution = discretizationResolution;

 Omega = omega;
 TargetRDF = targetRDF;

 InitSteps = initSteps;
 SamplingSteps = samplingSteps;

 DPD = new DPDEngineDiscretizedOmega(Particles, BoxSize, DeltaT, R0, RCutoff, Skin, Sigma, 102,
RPotentialEnd, DiscretizationResolution);

 InitialPositions = new double[Particles][];
 InitialVelocities = new double[Particles][];
 for (int i = 0; i < Particles; i++)
 {
 InitialPositions[i] = new double[3];
 InitialPositions[i][0] = 0;
 InitialPositions[i][1] = 0;
 InitialPositions[i][2] = 0;

 InitialVelocities[i] = new double[3];
 InitialVelocities[i][0] = 0;
 InitialVelocities[i][1] = 0;
 InitialVelocities[i][2] = 0;
 }

 //Cubic lattice
 double dist = BoxSize / Math.Pow(Particles, 1.0 / 3.0);
 int index = 0;
 for (double x = 0; x < BoxSize; x += dist)
 {
 for (double y = 0; y < BoxSize; y += dist)
 {
 for (double z = 0; z < BoxSize; z += dist)
 {
 InitialPositions[index][0] = x;
 InitialPositions[index][1] = y;
 InitialPositions[index][2] = z;
 index++;
 }
 }
 }

 DiffusionCoefficientTimeSteps = 50;
 ML = ml;

 RDFZeros = 0;
 for (int i = 0; i < DiscretizationResolution; i++)
 {
 if (TargetRDF[i][1] == 0)

87

 {
 RDFZeros++;
 }
 else
 {
 break;
 }
 }

 EvaluatedPotentials = new double[size][][];
 EvaluatedRDFs = new double[size][][];
 for (int i = 0; i < size; i++)
 {
 EvaluatedPotentials[i] = new double[DiscretizationResolution][];
 EvaluatedRDFs[i] = new double[DiscretizationResolution][];
 for (int j = 0; j < DiscretizationResolution; j++)
 {
 EvaluatedPotentials[i][j] = new double[2];
 EvaluatedRDFs[i][j] = new double[2];
 }
 }
 }

 public double[][] PotentialToForce(double[][] potential)
 {
 double[][] ret = new double[potential.Length][];

 double deltaR = potential[1][0] - potential[0][0];
 for (int i = 0; i < potential.Length - 1; i++)
 {
 ret[i] = new double[2];
 ret[i][0] = potential[i][0];
 ret[i][1] = -(potential[i + 1][1] - potential[i][1]) / deltaR;
 if (double.IsInfinity(ret[i][1]) || double.IsNaN(ret[i][1]))
 ret[i][1] = 310;
 }
 ret[potential.Length - 1] = new double[2];
 ret[potential.Length - 1][0] = potential[potential.Length - 1][0];
 ret[potential.Length - 1][1] = ret[potential.Length - 2][1];

 return ret;
 }

 public override object[] Representation(int index)
 {
 object[] ret = new object[2];

 Bitmap cpPlot = ML.ListLinePlot(EvaluatedPotentials[index], 230, 172, "Blue", "r",
"\\[CapitalPhi]", 0, RPotentialEnd, -3, 3);
 Bitmap rdfPlot = ML.ListLinePlot(EvaluatedRDFs[index], 230, 172, "Green", "r", "RDF");

 ret[0] = cpPlot;
 ret[1] = rdfPlot;
 return ret;
 }

 private double[][] DecodePotential(float[] g)
 {
 double[][] ret = new double[DiscretizationResolution][];
 double r;

 ret[DiscretizationResolution - 1] = new double[2];
 ret[DiscretizationResolution - 1][0] = TargetRDF[DiscretizationResolution - 1][0];
 ret[DiscretizationResolution - 1][1] = 0;
 for (int i = DiscretizationResolution - 2; i >= 0; i--)
 {
 ret[i] = new double[2];
 r = TargetRDF[i][0];

 ret[i][0] = r;
 ret[i][1] = g[i];

 if (i < RDFZeros - 3)
 {
 ret[i][1] += 100;
 }
 }

 return ML.SmoothArray(ret);
 }

 public override float Fitness(float[] g, int index, bool showEvaluation)
 {
 //
 //Decode
 //
 double[][] cp = DecodePotential(g);

88

 double[][] cf = PotentialToForce(cp);
 Bitmap cpPlot = null;
 Bitmap cfPlot = null;
 if (showEvaluation)
 {
 cpPlot = ML.ListLinePlot(cp, 160, 120, "Blue", "r", "\\[CapitalPhi]", 0, RPotentialEnd, -3,
3);
 cfPlot = ML.ListLinePlot(cf, 160, 120, "Gray", "r", "Fc", 0, RPotentialEnd, -3, 3);
 }

 DPD.SetPositionsAndVelocities(InitialPositions, InitialVelocities);
 DPD.SetConservativeForceAndOmega(cp, Omega);

 //
 //Initialize
 //
 int innersteps = 10;
 int outersteps = (int)((double)InitSteps / (double)innersteps);
 double[][] tempHistory = new double[outersteps][];
 for (int i = 0; i < outersteps; i++)
 {
 tempHistory[i] = new double[2];
 tempHistory[i][0] = i * innersteps * DeltaT;
 }

 for (int s = 0; s < outersteps; s++)
 {
 //if (Abort)
 // break;
 //if (s % 2 == 0)
 DPD.UpdateMeasurements();
 tempHistory[s][0] = s * innersteps * DeltaT;
 tempHistory[s][1] = (2 * DPD.KineticEnergy) / (3 * Particles);

 if (tempHistory[s][1] > 2)
 return 1000;

 if (showEvaluation)
 {
 GFitnessBufferG.Clear(BackColor);
 GFitnessBufferG.DrawString("Evaluating individual " + (index + 1).ToString(), f,
ForeColor1, 0, 0);
 GFitnessBufferG.DrawImage(cpPlot, 0, 40);
 GFitnessBufferG.DrawImage(cfPlot, 180, 40);
 GFitnessBufferG.DrawLine(Pens.DarkOrange, 360, 50, 360, 150);
 GFitnessBufferG.DrawString("Equilibration", f, ForeColor1, 380, 0);
 GFitnessBufferG.DrawString("Time: " + (s * innersteps * DeltaT).ToString("F4"), f,
ForeColor1, 380, 10);
 GFitnessBufferG.DrawImage(ML.ListLinePlot(DPD.RadialDistributionFunction, 160, 120,
"Green", "r", "RDF"), 380, 40);
 GFitnessBufferG.DrawImage(ML.ListLinePlot(tempHistory, 160, 120, "Red", "t", "kBT"),
560, 40);
 GFitnessBufferG.DrawString("kBT: " + tempHistory[s][1].ToString("F4"), f, ForeColor1,
560, 165);
 GFitness.DrawImage(GFitnessBuffer, 0, 0);

 }

 DPD.VerletStep(innersteps);

 }

 //
 //Sampling
 //
 innersteps = 10;
 outersteps = (int)((double)SamplingSteps / (double)innersteps);

 DPD.DiffusionCoefficientTimeStep = 0;
 DPD.DiffusionCoefficient = -1;

 double[] rdf = new double[DiscretizationResolution];

 double[][] temporaryrdf = new double[DiscretizationResolution][];
 for (int i = 0; i < DiscretizationResolution; i++)
 {
 temporaryrdf[i] = new double[2];
 temporaryrdf[i][0] = TargetRDF[i][0];
 }
 double temporaryerror = 0;

 for (int s = 0; s < outersteps; s++)
 {
 //if (Abort)
 // break;

 //if (s % 2 == 0)

89

 if (showEvaluation)
 {
 if (s != 0)
 {
 temporaryerror = 0;
 for (int i = 0; i < DiscretizationResolution; i++)
 {
 temporaryrdf[i][1] = rdf[i] / s;
 temporaryerror += Math.Abs(TargetRDF[i][1] - temporaryrdf[i][1]);
 }
 temporaryerror = Math.Pow(1 + temporaryerror, 2);
 }

 GFitnessBufferG.Clear(BackColor);
 GFitnessBufferG.DrawString("Evaluating individual " + (index + 1).ToString(), f,
ForeColor1, 0, 0);
 GFitnessBufferG.DrawImage(cpPlot, 0, 40);
 GFitnessBufferG.DrawImage(cfPlot, 180, 40);
 GFitnessBufferG.DrawLine(Pens.DarkOrange, 360, 50, 360, 150);
 GFitnessBufferG.DrawString("Sampling RDF", f, ForeColor1, 380, 0);
 GFitnessBufferG.DrawString("Time: " + (s * innersteps * DeltaT).ToString("F4"), f,
ForeColor1, 380, 10);
 if (DPD.DiffusionCoefficient != -1)
 GFitnessBufferG.DrawString("Diffusion coef.: " +
DPD.DiffusionCoefficient.ToString("F4"), f, ForeColor1, 380, 20);
 GFitnessBufferG.DrawImage(ML.ListLinePlot(temporaryrdf, 160, 120, "Green", "r", "RDF"),
380, 40);
 GFitnessBufferG.DrawString("Error: " + temporaryerror.ToString("F4"), f, ForeColor1,
380, 165);
 GFitness.DrawImage(GFitnessBuffer, 0, 0);

 }

 DPD.VerletStep(innersteps);
 DPD.UpdateMeasurements();

 //RDF
 for (int i = 0; i < DiscretizationResolution; i++)
 {
 rdf[i] += DPD.RadialDistributionFunction[i][1];
 }

 if (showEvaluation)
 {
 //Diffusion coefficient
 if (DPD.DiffusionCoefficientTimeStep == 0)
 {
 for (int i = 0; i < Particles; i++)
 {
 DPD.DiffusionCoefficientR0[i] = DPD.Displacements[i].Copy();
 }
 }
 else if (DPD.DiffusionCoefficientTimeStep >= DiffusionCoefficientTimeSteps)
 {
 DPD.DiffusionCoefficient = 0;
 for (int i = 0; i < Particles; i++)
 {
 DPD.DiffusionCoefficientR0[i].Subtract(DPD.Displacements[i]);
 DPD.DiffusionCoefficient += DPD.DiffusionCoefficientR0[i].SizeSquared;
 }
 DPD.DiffusionCoefficient /= (Particles * 6 * DPD.DiffusionCoefficientTimeStep *
DeltaT);

 DPD.DiffusionCoefficientTimeStep = -innersteps;
 }
 DPD.DiffusionCoefficientTimeStep += innersteps;
 }
 }

 //
 //Fitness
 //
 double error = 0;
 for (int i = 0; i < DiscretizationResolution; i++)
 {
 rdf[i] /= outersteps;
 temporaryrdf[i][1] = rdf[i];

 error += Math.Abs(TargetRDF[i][1] - rdf[i]);
 }

 EvaluatedRDFs[index] = temporaryrdf;
 EvaluatedPotentials[index] = cp;

 //error = Math.Sqrt(error);

 return (float)Math.Pow(1 + error, 2);

90

 }

 }

 public class DPDGADissipative : gbp.AI.GeneticAlgorithms.GeneticAlgorithms
 {
 private DPDEngineDiscretizedOmega DPD;

 private int Particles;
 private double BoxSize;
 private double DeltaT;
 private double R0;
 private double RCutoff;
 private double Skin;
 private double Sigma;
 private double RPotentialEnd;
 private int DiscretizationResolution;
 private int ETDResolution;
 private double ETDTMax;
 private double ETDRMin;
 private double ETDRMax;

 private double[][] InitialPositions;
 private double[][] InitialVelocities;
 private double[][] ConservativePotential;
 private double[][] ConservativeForce;
 private double[][] TargetETD;

 private int InitSteps;

 private int DiffusionCoefficientTimeSteps;

 private gbp.MathematicaLink.MathematicaLink ML;

 private double[][][] EvaluatedOmegas;
 private double[][][] EvaluatedETDs;

 public DPDGADissipative(int size, double geneMinimum, double geneMaximum, int generations, float
crossoverChance, float mutationChance, int tournamentSize, float tournamentChance, bool elitism, float
fitnessTreshold, gbp.AI.GeneticAlgorithms.ImprovementDelegate improvement,
gbp.AI.GeneticAlgorithms.StoppedDelegate stopped, Graphics gStatus, Bitmap gStatusBuffer, Graphics
gProgress, Bitmap gProgressBuffer, Graphics gFitness, Bitmap gFitnessBuffer, int particles, double boxSize,
double deltaT, double r0, double rCutoff, double skin, double sigma, double rPotentialEnd, int
discretizationResolution, int etdResolution, double[][] conservativePotential, double[][] targetETD, double
etdTMax, double etdRMin, double etdRMax, int initSteps, gbp.MathematicaLink.MathematicaLink ml)
 : base(size, 5, geneMinimum, geneMaximum, generations, crossoverChance, mutationChance,
tournamentSize, tournamentChance, elitism, fitnessTreshold, improvement, stopped, gStatus, gStatusBuffer,
gProgress, gProgressBuffer, gFitness, gFitnessBuffer, Color.Black, Color.Orange, Color.DarkOrange)
 {
 Particles = particles;
 BoxSize = boxSize;
 DeltaT = deltaT;
 R0 = r0;
 RCutoff = rCutoff;
 Skin = skin;
 Sigma = sigma;
 RPotentialEnd = rPotentialEnd;
 DiscretizationResolution = discretizationResolution;
 ETDResolution = etdResolution;
 ETDTMax = etdTMax;
 ETDRMin = etdRMin;
 ETDRMax = etdRMax;

 ConservativePotential = conservativePotential;
 ConservativeForce = PotentialToForce(ConservativePotential);
 TargetETD = targetETD;

 InitSteps = initSteps;

 DPD = new DPDEngineDiscretizedOmega(Particles, BoxSize, DeltaT, R0, RCutoff, Skin, Sigma, 102,
RPotentialEnd, DiscretizationResolution);

 InitialPositions = new double[Particles][];
 InitialVelocities = new double[Particles][];
 for (int i = 0; i < Particles; i++)
 {
 InitialPositions[i] = new double[3];
 InitialPositions[i][0] = 0;
 InitialPositions[i][1] = 0;
 InitialPositions[i][2] = 0;

 InitialVelocities[i] = new double[3];
 InitialVelocities[i][0] = 0;
 InitialVelocities[i][1] = 0;
 InitialVelocities[i][2] = 0;
 }

91

 //Cubic lattice
 double dist = BoxSize / Math.Pow(Particles, 1.0 / 3.0);
 int index = 0;
 for (double x = 0; x < BoxSize; x += dist)
 {
 for (double y = 0; y < BoxSize; y += dist)
 {
 for (double z = 0; z < BoxSize; z += dist)
 {
 InitialPositions[index][0] = x;
 InitialPositions[index][1] = y;
 InitialPositions[index][2] = z;
 index++;
 }
 }
 }

 DiffusionCoefficientTimeSteps = 50;
 ML = ml;

 EvaluatedOmegas = new double[size][][];
 EvaluatedETDs = new double[size][][];
 for (int i = 0; i < size; i++)
 {
 EvaluatedOmegas[i] = new double[DiscretizationResolution][];
 for (int j = 0; j < DiscretizationResolution; j++)
 {
 EvaluatedOmegas[i][j] = new double[2];
 }
 EvaluatedETDs[i] = new double[ETDResolution][];
 for (int j = 0; j < ETDResolution; j++)
 {
 EvaluatedETDs[i][j] = new double[ETDResolution];
 }

 }
 }

 public double[][] PotentialToForce(double[][] potential)
 {
 double[][] ret = new double[potential.Length][];

 double deltaR = potential[1][0] - potential[0][0];
 for (int i = 0; i < potential.Length - 1; i++)
 {
 ret[i] = new double[2];
 ret[i][0] = potential[i][0];
 ret[i][1] = -(potential[i + 1][1] - potential[i][1]) / deltaR;
 }
 for (int i = potential.Length - 2; i >= 0; i--)
 {
 if (double.IsInfinity(ret[i][1]) || double.IsNaN(ret[i][1]))
 {
 ret[i][1] = ret[i + 1][1] + 100;
 }
 }
 ret[potential.Length - 1] = new double[2];
 ret[potential.Length - 1][0] = potential[potential.Length - 1][0];
 ret[potential.Length - 1][1] = ret[potential.Length - 2][1];

 return ret;
 }

 public override object[] Representation(int index)
 {
 object[] ret = new object[2];

 Bitmap omegaPlot = ML.ListLinePlot(EvaluatedOmegas[index], 230, 172, "Purple", "r",
"\\[Omega]", 0, RPotentialEnd);
 Bitmap etdPlot = ML.ListContourPlot(EvaluatedETDs[index], 220, 220, ETDRMin, ETDRMax, 0,
ETDTMax);

 ret[0] = omegaPlot;
 ret[1] = etdPlot;
 return ret;
 }

 private double[][] DecodeOmegaOld(float[] g)
 {
 double[][] ret = new double[DiscretizationResolution][];
 double r;
 //double shift = g[0] + g[1] * RCutoff + g[2] * RCutoff * RCutoff + g[3] * Math.Pow(RCutoff,
3);
 //double scale = g[0] + g[1] * R0 + g[2] * R0 * R0 + g[3] * Math.Pow(R0, 3) - shift;

 for (int i = 0; i < DiscretizationResolution; i++)
 {

92

 r = ConservativePotential[i][0];

 ret[i] = new double[2];
 ret[i][0] = r;

 if ((r <= R0) || (r > RCutoff))
 {
 ret[i][1] = 0;
 }
 else
 {
 //ret[i][1] = Sigma * (g[0] + g[1] * r + g[2] * r * r + g[3] * Math.Pow(r, 3) - shift);
 //ret[i][1] = Sigma * (1 - (r - R0) / (RCutoff - R0));
 //ret[i][1] = Sigma * 8 * g[0] * (1 - Math.Pow((r - R0) / (RCutoff - R0), 2 * g[1]));
 ret[i][1] = Sigma * 8 * g[0] * Math.Exp(-10 * g[1] * r);
 }
 }

 return ret;
 }

 private double[][] DecodeOmega(float[] g)
 {
 double[][] points = new double[5][];
 points[0] = new double[] { ConservativePotential[0][0], Sigma * g[0] };
 points[1] = new double[] { ConservativePotential[19][0], Sigma * g[1] };
 points[2] = new double[] { ConservativePotential[39][0], Sigma * g[2] };
 points[3] = new double[] { ConservativePotential[59][0], Sigma * g[3] };
 points[3] = new double[] { ConservativePotential[79][0], Sigma * g[4] };
 points[4] = new double[] { ConservativePotential[99][0], 0 };

 double[][] ret = ML.SmoothArray(points, ConservativePotential[0][0],
ConservativePotential[99][0], 100);
 double r;

 for (int i = 0; i < DiscretizationResolution; i++)
 {
 r = ConservativePotential[i][0];

 if ((r <= R0) || (r > RCutoff))
 {
 ret[i][1] = 0;
 }
 }
 return ret;
 }

 public override float Fitness(float[] g, int index, bool showEvaluation)
 {
 string genes = ArrayToString(g);

 //
 //Decode
 //
 double[][] omega = DecodeOmega(g);
 Bitmap omegaPlot = null;
 if (showEvaluation)
 {
 omegaPlot = ML.ListLinePlot(omega, 160, 120, "Purple", "r", "\\[Omega]");
 }

 DPD.SetPositionsAndVelocities(InitialPositions, InitialVelocities);
 DPD.SetConservativeForceAndOmega(ConservativeForce, omega);

 //
 //Initialize
 //
 int innersteps = 10;
 int outersteps = (int)((double)InitSteps / (double)innersteps);
 double[][] tempHistory = new double[outersteps][];
 for (int i = 0; i < outersteps; i++)
 {
 tempHistory[i] = new double[2];
 tempHistory[i][0] = i * innersteps * DeltaT;
 }

 for (int s = 0; s < outersteps; s++)
 {
 //if (Abort)
 // break;
 //if (s % 2 == 0)
 DPD.UpdateMeasurements();
 tempHistory[s][0] = s * innersteps * DeltaT;
 tempHistory[s][1] = (2 * DPD.KineticEnergy) / (3 * Particles);

 if (tempHistory[s][1] > 100)
 return 1000000;

93

 if (showEvaluation)
 {
 GFitnessBufferG.Clear(BackColor);
 GFitnessBufferG.DrawString("Evaluating individual " + (index + 1).ToString() + ": " +
genes, f, ForeColor1, 0, 0);
 GFitnessBufferG.DrawImage(omegaPlot, 0, 50);
 GFitnessBufferG.DrawLine(Pens.DarkOrange, 260, 60, 260, 160);
 GFitnessBufferG.DrawString("Equilibration", f, ForeColor1, 280, 10);
 GFitnessBufferG.DrawString("Time: " + (s * innersteps * DeltaT).ToString("F4"), f,
ForeColor1, 280, 20);
 GFitnessBufferG.DrawImage(ML.ListLinePlot(DPD.RadialDistributionFunction, 160, 120,
"Green", "r", "RDF", 0, RCutoff, 0, 3), 280, 50);
 GFitnessBufferG.DrawImage(ML.ListLinePlot(tempHistory, 160, 120, "Red", "t", "kBT"),
460, 50);
 GFitnessBufferG.DrawString("kBT: " + tempHistory[s][1].ToString("F4"), f, ForeColor1,
460, 175);
 GFitness.DrawImage(GFitnessBuffer, 0, 0);
 }

 DPD.VerletStep(innersteps);

 }

 //
 //Sampling
 //
 int passes = 4;
 DPD.DiffusionCoefficientTimeStep = 0;
 DPD.DiffusionCoefficient = -1;

 double[][] etd = new double[ETDResolution][];
 double[][] temporaryetd = new double[ETDResolution][];
 for (int i = 0; i < ETDResolution; i++)
 {
 etd[i] = new double[ETDResolution];
 temporaryetd[i] = new double[ETDResolution];
 }
 double temporaryerror = 0;

 if (showEvaluation)
 {
 GFitnessBufferG.Clear(BackColor);
 GFitnessBufferG.DrawString("Evaluating individual " + (index + 1).ToString() + ": " +
genes, f, ForeColor1, 0, 0);
 GFitnessBufferG.DrawImage(omegaPlot, 0, 50);
 GFitnessBufferG.DrawLine(Pens.DarkOrange, 260, 60, 260, 160);
 GFitnessBufferG.DrawString("Sampling escape time distribution", f, ForeColor1, 280, 10);
 GFitnessBufferG.DrawString("Pass: 1", f, ForeColor1, 280, 20);
 GFitness.DrawImage(GFitnessBuffer, 0, 0);
 }
 for (int s = 0; s < passes; s++)
 {
 //if (Abort)
 // break;

 //if (s % 2 == 0)
 if (showEvaluation)
 {
 temporaryetd = EscapeTimeDistributionStepwise(ETDRMin, ETDRMax, ETDTMax, ETDResolution,
GFitness, new PointF(280, 50));

 for (int i = 0; i < ETDResolution; i++)
 {
 for (int j = 0; j < ETDResolution; j++)
 {
 etd[i][j] += temporaryetd[i][j];
 temporaryetd[i][j] = etd[i][j] / (s + 1);
 }
 }

 temporaryerror = 0;
 for (int i = 0; i < ETDResolution; i++)
 {
 for (int j = 0; j < ETDResolution; j++)
 {
 temporaryerror += Math.Pow(TargetETD[i][j] - (etd[i][j] / (s + 1)), 2);
 }
 }
 temporaryerror = Math.Sqrt(temporaryerror);

 GFitnessBufferG.Clear(BackColor);
 GFitnessBufferG.DrawString("Evaluating individual " + (index + 1).ToString() + ": " +
genes, f, ForeColor1, 0, 0);
 GFitnessBufferG.DrawImage(omegaPlot, 0, 50);
 GFitnessBufferG.DrawLine(Pens.DarkOrange, 260, 60, 260, 160);

94

 GFitnessBufferG.DrawString("Sampling escape time distribution", f, ForeColor1, 280,
10);
 GFitnessBufferG.DrawString("Pass: " + (s + 2).ToString(), f, ForeColor1, 280, 20);
 if (DPD.DiffusionCoefficient != -1)
 GFitnessBufferG.DrawString("Diffusion coef.: " +
DPD.DiffusionCoefficient.ToString("F4"), f, ForeColor1, 280, 30);
 //GFitnessBufferG.DrawImage(ML.ArrayPlot(etd, 160, 120, ETDRMin, ETDRMax, 0, ETDTMax),
380, 40);
 GFitnessBufferG.DrawImage(ML.ArrayPlot(temporaryetd, 150, 150, ETDRMin, ETDRMax, 0,
ETDTMax), 440, 50);
 GFitnessBufferG.DrawString("Error: " + temporaryerror.ToString("F4"), f, ForeColor1,
600, 50);
 GFitness.DrawImage(GFitnessBuffer, 0, 0);

 //Diffusion coefficient
 if (DPD.DiffusionCoefficientTimeStep == 0)
 {
 for (int i = 0; i < Particles; i++)
 {
 DPD.DiffusionCoefficientR0[i] = DPD.Displacements[i].Copy();
 }
 }
 else if (DPD.DiffusionCoefficientTimeStep >= DiffusionCoefficientTimeSteps)
 {
 DPD.DiffusionCoefficient = 0;
 for (int i = 0; i < Particles; i++)
 {
 DPD.DiffusionCoefficientR0[i].Subtract(DPD.Displacements[i]);
 DPD.DiffusionCoefficient += DPD.DiffusionCoefficientR0[i].SizeSquared;
 }
 DPD.DiffusionCoefficient /= (Particles * 6 * DPD.DiffusionCoefficientTimeStep *
DeltaT);

 DPD.DiffusionCoefficientTimeStep = -(int)(ETDTMax / DeltaT);
 }
 DPD.DiffusionCoefficientTimeStep += (int)(ETDTMax / DeltaT);
 }
 else
 {
 temporaryetd = DPD.EscapeTimeDistribution(ETDRMin, ETDRMax, ETDTMax, ETDResolution);

 for (int i = 0; i < ETDResolution; i++)
 {
 for (int j = 0; j < ETDResolution; j++)
 {
 etd[i][j] += temporaryetd[i][j];
 }
 }
 }
 }

 //
 //Fitness
 //
 double error = 0;
 for (int i = 0; i < ETDResolution; i++)
 {
 for (int j = 0; j < ETDResolution; j++)
 {
 etd[i][j] /= (double)passes;
 error += Math.Pow(TargetETD[i][j] - etd[i][j], 2);
 }
 }

 EvaluatedETDs[index] = etd;
 EvaluatedOmegas[index] = omega;

 return (float)Math.Sqrt(error);
 }

 public double[][] EscapeTimeDistributionStepwise(double rmin, double rmax, double tmax, int
resolution, Graphics g, PointF pos)
 {
 Vector3D rij;
 double rrange = rmax - rmin;

 int tstep = (int)((tmax / DeltaT) / (resolution - 1));

 double[][] ret = new double[resolution][];
 for (int i = 0; i < resolution; i++)
 {
 ret[i] = new double[resolution];
 for (int j = 0; j < resolution; j++)
 {
 ret[i][j] = 1;
 }
 }

95

 double[] t0particles = new double[resolution];

 int[,] startrindices = new int[Particles, Particles];
 int trackedpairs = 0;
 for (int i = 0; i < Particles; i++)
 {
 for (int j = 0; j < i; j++)
 {
 rij = DPD.Positions[i] - DPD.Positions[j];
 DPD.NearestImageTransform(ref rij);

 if ((rij.Size < rmin) || (rij.Size >= rmax))
 {
 startrindices[i, j] = -1;
 }
 else
 {
 startrindices[i, j] = (int)(((rij.Size - rmin) / rrange) * resolution);
 trackedpairs++;

 ret[0][startrindices[i, j]] = 1;
 t0particles[startrindices[i, j]]++;
 }
 }
 }

 for (int t = 1; t < resolution; t++)
 {
 DPD.VerletStep(tstep);

 for (int i = 0; i < Particles; i++)
 {
 for (int j = 0; j < i; j++)
 {
 if (startrindices[i, j] != -1)
 {
 rij = DPD.Positions[i] - DPD.Positions[j];
 DPD.NearestImageTransform(ref rij);

 if (rij.Size < rmax)
 {
 ret[t][startrindices[i, j]]++;
 }
 else
 {
 startrindices[i, j] = -1;
 }
 }
 }
 }

 for (int i = 0; i < resolution; i++)
 {
 ret[t][i] /= t0particles[i];
 }

 if (t % 2 == 0)
 {
 g.DrawImage(ML.ArrayPlot(ret, 150, 150, ETDRMin, ETDRMax, 0, ETDTMax), pos);
 }
 }

 return ret;
 }
 }
}

Auxiliary Mathematica code

The Mathematica code for fitting Bézier splines to random walks (Section 4.3.1) and
producing plots is wrapped within the MathematicaLink class as strings that are
evaluated through Wolfram.NETLink.IKernelLink interface.

Language: C#

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

96

using System.Drawing;
using Wolfram.NETLink;
using Wolfram.NETLink.UI;

namespace AtilimGunesBaydin.MathematicaLink
{
 public class MathematicaLink
 {
 IKernelLink Link;

 public MathematicaLink()
 {
 Link = MathLinkFactory.CreateKernelLink();
 Link.WaitAndDiscardAnswer();

 //Function definitions
 Link.Evaluate("Needs[\"Splines`\"]");
 Link.WaitAndDiscardAnswer();
 Link.Evaluate("smoothList[list_]:=Module[{fit,y},fit=SplineFit[list,Bezier];Table[fit[i-
1],{i,Length[list]}]]");
 Link.WaitAndDiscardAnswer();
 Link.Evaluate("smoothList[points_, rmin_, rmax_,
resolution_]:=Module[{fit},fit=SplineFit[points,Bezier];Table[{rmin+x(rmax-rmin)/(Length[points]-
1),fit[x][[2]]},{x,0.,Length[points]-1.,(Length[points]-1)/(resolution-1.)}]]");
 Link.WaitAndDiscardAnswer();
 }

 public string EncodeExpression(double[][] array)
 {
 StringBuilder s = new StringBuilder();
 s.Append('{');
 string test;
 for (int i = 0; i < array.Length; i++)
 {
 s.Append('{');
 for (int j = 0; j < array[0].Length; j++)
 {
 test = array[i][j].ToString();
 test = test.Replace("E", "*10^");
 s.Append(test);
 if (j != array[0].Length - 1)
 {
 s.Append(',');
 }
 }
 s.Append('}');
 if (i != array.Length - 1)
 {
 s.Append(',');
 }
 }
 s.Append('}');

 return s.ToString();
 }

 public Bitmap ListLinePlot(double[][] list, int width, int height, string color, string xlabel,
string ylabel)
 {
 string options = ",PlotRange->{{0,All},Automatic},Background->Black,AxesStyle-
>Orange,AspectRatio->0.75,PlotStyle->{" + color + ",Thick},AxesLabel->{\"" + xlabel + "\",\"" + ylabel +
"\"},ImageSize->{" + width.ToString() + "," + height.ToString() + "}";
 string expr = "ListLinePlot[" + EncodeExpression(list) + options + "]";
 return (Bitmap)Link.EvaluateToImage(expr, width, height);
 }

 public Bitmap ListLinePlot(double[][] list, int width, int height, string color, string xlabel,
string ylabel, double xmin, double xmax)
 {
 string options = ",PlotRange->{{" + xmin + "," + xmax + "},All},Background->Black,AxesStyle-
>Orange,AspectRatio->0.75,PlotStyle->{" + color + ",Thick},AxesLabel->{\"" + xlabel + "\",\"" + ylabel +
"\"},ImageSize->{" + width.ToString() + "," + height.ToString() + "}";
 string expr = "ListLinePlot[" + EncodeExpression(list) + options + "]";
 return (Bitmap)Link.EvaluateToImage(expr, width, height);
 }

 public Bitmap ListLinePlot(double[][] list, int width, int height, string color, string xlabel,
string ylabel, double xmin, double xmax, double ymin, double ymax)
 {
 string options = ",PlotRange->{{" + xmin + "," + xmax + "},{" + ymin + "," + ymax +
"}},Background->Black,AxesStyle->Orange,AspectRatio->0.75,PlotStyle->{" + color + ",Thick},AxesLabel->{\""
+ xlabel + "\",\"" + ylabel + "\"},ImageSize->{" + width.ToString() + "," + height.ToString() + "}";
 string expr = "ListLinePlot[" + EncodeExpression(list) + options + "]";
 return (Bitmap)Link.EvaluateToImage(expr, width, height);
 }

97

 public Bitmap ArrayPlot(double[][] list, int width, int height, double rangexmin, double rangexmax,
double rangeymin, double rangeymax)
 {
 string expr = "ArrayPlot[Reverse[" + EncodeExpression(list) + "],Background->Black,FrameStyle-
>Orange,FrameTicks->{{All,None},{All,None}},DataRange->{{" + rangexmin.ToString() + "," +
rangexmax.ToString() + "},{" + rangeymin.ToString() + "," + rangeymax.ToString() + "}},AspectRatio-
>1,ImageSize->{" + width.ToString() + "," + height.ToString() + "}]";
 return (Bitmap)Link.EvaluateToImage(expr, width, height);
 }

 public Bitmap ListContourPlot(double[][] list, int width, int height, double rangexmin, double
rangexmax, double rangeymin, double rangeymax)
 {
 string expr = "ListContourPlot[" + EncodeExpression(list) + ",Background->Black,FrameStyle-
>Orange,AspectRatio->1,Contours->15,ColorFunction->(GrayLevel[1-#]&),ImageSize->{" + width.ToString() + ","
+ height.ToString() + "},DataRange->{{" + rangexmin.ToString() + "," + rangexmax.ToString() + "},{" +
rangeymin.ToString() + "," + rangeymax.ToString() + "}}]";
 return (Bitmap)Link.EvaluateToImage(expr, width, height);
 }

 public double[][] SmoothArray(double[][] array)
 {
 Link.Evaluate("smoothList[" + EncodeExpression(array) + "]");
 Link.WaitForAnswer();
 double[,] tmp = (double[,])Link.GetArray(typeof(double), 2);
 double[][] ret = new double[array.Length][];
 for (int i = 0; i < array.Length; i++)
 {
 ret[i] = new double[array[0].Length];
 for (int j = 0; j < array[0].Length; j++)
 {
 ret[i][j] = tmp[i, j];
 }
 }

 return ret;
 }

 public double[][] SmoothArray(double[][] points, double rmin, double rmax, int resolution)
 {
 Link.Evaluate("smoothList[" + EncodeExpression(points) + "," + rmin.ToString() + "," +
rmax.ToString() + "," + resolution.ToString() + "]");
 Link.WaitForAnswer();
 double[,] tmp = (double[,])Link.GetArray(typeof(double), 2);
 double[][] ret = new double[resolution][];
 for (int i = 0; i < resolution; i++)
 {
 ret[i] = new double[2];
 ret[i][0] = tmp[i, 0];
 ret[i][1] = tmp[i, 1];
 }

 return ret;
 }

 public void Close()
 {
 Link.Close();
 }
 }
}

