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Abstract

Analogy plays an important role in creativity, and is
extensively used in science as well as art. In this pa-
per we introduce a technique for the automated gener-
ation of cross-domain analogies based on a novel evo-
lutionary algorithm (EA). Unlike existing work in com-
putational analogy-making restricted to creating analo-
gies between two given cases, our approach, for a given
case, is capable of creating an analogy along with the
novel analogous case itself. Our algorithm is based on
the concept of “memes”, which are units of culture,
or knowledge, undergoing variation and selection un-
der a fitness measure, and represents evolving pieces
of knowledge as semantic networks. Using a fitness
function based on Gentner’s structure mapping theory
of analogies, we demonstrate the feasibility of sponta-
neously generating semantic networks that are analo-
gous to a given base network.

Introduction

In simplest terms, analogy is the transfer of information
from a known subject (the analogue or base) onto another
particular subject (the farger), on the basis of similarity. The
cognitive process of analogy is considered at the heart of
many defining aspects of human intellectual capacity, in-
cluding problem solving, perception, memory, and creativity
(Holyoak and Thagard 1996); and it has been even argued,
by Hofstadter (2001}), that analogy is “the core of cognition”.

Analogy-making ability is extensively linked with cre-
ative thought (Hofstadter 1995; Holyoak and Thagard 1996;
‘Ward, Smith, and Vaid 2001; |Boden 2004) and plays a
fundamental role in discoveries and changes of knowledge
in arts as well as science, with key examples such as Jo-
hannes Kepler’s explanation of the laws of heliocentric
planetary motion with an analogy to light radiating from

the Surﬂ (Gentner and Markman 1997); or Ernest Ruther-

ford’s analogy between the atom and the Solar Systenﬂ
(Falkenhainer, Forbus, and Gentner 1989). Boden (2004;
2009) classifies analogy as a form of combinational creativ-
ity, noting that it works by producing unfamiliar combina-
tions of familiar ideas.

In this paper, we present a technique for the automated
generation of cross-domain analogies using evolutionary

'Kepler argued, as light can travel undetectably on its way be-
tween the source and destination, and yet illuminate the destina-
tion, so can motive force be undetectable on its way from the Sun
to planet, yet affect planet’s motion.

The Rutherford-Bohr model of the atom considers electrons
to circle the nucleus in orbits like planets around the Sun, with
electrostatic forces providing attraction, rather than gravity.

computation. Existing research on computational analogy
is virtually restricted to the discovery and assessment of
analogies between a given pair of base case A and target
case B (French 2002) (An exception is the Kilaza model by
O’Donoghue (2004)). On the other hand, given a base case
A, the approach that we present here is capable of creating
a novel analogous case B itself, along with the analogical
mapping between A and B. This capability of open-ended
creation of novel analogous cases is, to our knowledge, the
first of its kind and makes our approach highly relevant from
a computational creativity perspective. It replicates the psy-
chological observation that an analogy is not always simply
“recognized” between an original case and a retrieved analo-
gous case, but the analogous case can sometimes be created
together with the analogy (Clement 1988)).

As the core of our approach, we introduce a novel evo-
lutionary algorithm (EA) based on the concept of “meme”
(Dawkins 1989), where the individuals forming the popula-
tion represent units of culture, or knowledge, that are under-
going variation, transmission, and selection. We represent
individuals as simple semantic networks that are directed
graphs of concepts and binary relations (Sowa 1991)). These
go through variation by memetic versions of EA crossover
and mutation, which we adapt to work on semantic net-
works, utilizing the commonsense knowledge bases of Con-
ceptNet (Havasi, Speer, and Alonso 2007) and WordNet
(Fellbaum 1998)). Defining a memetic fitness measure using
analogical similarity from Gentner’s psychological structure
mapping theory (Gentner and Markman 1997), we demon-
strate the feasibility of generating semantic networks that are
analogous to a given base network.

In this introductory work, we focus on the evolution of
analogies using a memetic fitness function promoting analo-
gies. But it is of note that considering different possible fit-
ness measures, the proposed representation and algorithm
can serve as a generic tool for the generation of pieces of
knowledge with any desired property that is a quantifiable
function of the represented knowledge. Our algorithm can
also act as a computational model for experimenting with
memetic theories of knowledge, such as evolutionary epis-
temology and cultural selection theory.

After a review of existing research in analogy, evolution,
and creativity, the paper introduces details of our algorithm.
We then present results and discussion of using the fitness
function based on analogical similarity, and conclude with
future work and potential applications in creativity.



Background
Analogy

Analogical reasoning has been actively studied from both
cognitive and computational perspectives. The dominant
school of research in the field, advanced by Gentner (Falken-
hainer, Forbus, and Gentner 1989; Gentner and Markman
1997)), describes analogy as a structural matching, in which
elements from a base domain are mapped to (or aligned
with) those in a target domain via structural similarities of
their relations. This approach named structure mapping the-
ory, with its computational implementation, the Structure
Mapping Engine (SME) (Falkenhainer, Forbus, and Gentner|
1989)), has been cited as the most influential work to date on
the modeling of analogy-making (French 2002). Alternative
approaches in the field include the coherence based view
developed by Holyoak and Thagard (Thagard et al. 1990;
Holyoak and Thagard 1996)), in which analogy is consid-
ered as a constraint satisfaction problem involving structure,
semantic similarity, and purpose; and the view of Hofstadter
(1995)) of analogy as a kind of high-level perception, where
one situation is perceived as another one. Veale and Keane
(1997) extend the work in analogical reasoning to the more
specific case of metaphors, which describe the understand-
ing of one kind of thing in terms of another. A highly re-
lated cognitive theory is the conceptual blending idea de-
veloped by Fauconnier and Turner (2002), which involves
connecting several existing concepts to create new meaning,
operating below the level of consciousness as a fundamental
mechanism of cognition. An implementation of this idea is
given by Pereira (2007) as a computational model of abstract
thought, creativity, and language.

According to whether the base and target cases belong to
the same or different domains, there are two types of anal-
ogy: intra-domain, confined to surface similarities within
the same domain; and cross-domain, using deep struc-
tural similarities between semantically distant information.
While much of the research in artificial intelligence has been
restricted to intra-domain analogies (e.g. case-based reason-
ing), studies in psychology have been more concerned with
cross-domain analogical experiments (Thagard et al. 1990).

Evolutionary and Memetic Algorithms

Generalizing the mechanisms of the evolutionary process
that has given rise to the diversity of life on earth, the ap-
proach of Universal Darwinism uses a simple progression of
variation, natural selection, and heredity to explain a wide
variety of phenomena; and it extends the domain of this
process to systems outside biology, including economics,
psychology, physics, and even culture (Dennett 1995). In
terms of application, the metaheuristic optimization method
of evolutionary algorithms (EA) provides an implementation
of this idea, established as a solid technique with diverse
problems in engineering as well as natural and social sci-
ences (Coello Coello, Lamont, and Van Veldhuizen 2007).
In an analogy with the unit of heredity in biological evo-
lution, the gene, the concept of meme was introduced by
Dawkins (1989) as a unit of idea or information in cultural
evolution, hosted, altered, and reproduced in individuals’

minds, forming the basis of the field of memeticsﬂ

3Quoting Dawkins (Dawkins 1989): “Examples of memes are
tunes, ideas, catch-phrases, clothes fashions, ways of making pots
or of building arches. Just as genes propagate themselves in the
gene pool by leaping from body to body via sperms or eggs, so
memes propagate themselves in the meme pool by leaping from
brain to brain...”

Within evolutionary computation, the recently maturing
field of memetic algorithms (MA) has experienced increas-
ing interest as a method for solving many hard optimization
problems (Moscato, Cotta, and Mendes 2004). The existing
formulation of MA is essentially a hybrid approach, com-
bining classical EA with local search, where the population-
based global sampling of EA in each generation is followed
by an individual learning step mimicking cultural evolution,
performed by each candidate solution. For this reason, this
approach has been often referred to under different names
besides MA, such as “hybrid EA” or “Lamarckian EA”. To
date, MA has been successfully applied to a wide variety of
problem domains such as NP-hard optimization problems,
engineering, machine learning, and robotics.

The potential of an evolutionary approach to creativity has
been noted from cultural and practical viewpoints (Gabora
1997; Boden 2009). EA techniques have been shown to em-
ulate creativity in engineering, such as genetic programming
(GP) introduced by Koza (2003) as being capable of “rou-

tinely producing inventive and creative results’f} as well
as in visual art, design, and music (Romero and Machado
2008). In psychology, there are studies providing support
to an evolutionary view of creativity, such as the behavioral
analysis by Simonton (2003) inferring that scientific creativ-
ity constitutes a form of constrained stochastic behavior.

The Algorithm

Our approach is based on a meme pool comprising individ-
uals represented as semantic networks, subject to variation
and selection under a fitness measure. We position our al-
gorithm as a novel memetic algorithm, because (1) it is the
units of culture, or information, that are undergoing varia-
tion, transmission, and selection, very close to the original
sense of “memetics” as it was introduced by Dawkins; and
(2) this is unlike the existing sense of the word in current
MA as an hybridization of individual learning and EA. This
algorithm is intended as a new tool focused exclusively on
the memetic evolution of knowledge itself, which can find
use in knowledge-based systems, reasoning, and creativity.
Our algorithm proceeds similar to a conventional EA cy-
cle (Algorithm[T), with a relatively small set of parameters.
We implement semantic networks as linked-list data struc-
tures of concept and relation objects. The descriptions of
representation, fitness evaluation, variation, and selection
steps are presented in the following sections. Parameters
affecting each step of the algorithm are given in Table[T]

Algorithm 1 Outline of the algorithm
1: procedure MEMETICALGORITHM

2 P(t =0) + INITIALIZE(P0psize; Crnazy Rmin, T)
3 repeat

4 @(t) <+ EVALUATEFITNESSES(P(t))

5: S(t) <= SELECTION(P(t), 4(t), Ssizes Sprob)
6: V(t) <~ VARIATION(S(t), P, Py, T)

7 P(t+1) « V(¢

8 t—t+1

9 until stop criterion

10: end procedure

4Striking examples of demonstrated GP creativity include repli-
cation of historically important discoveries in engineering, such as
the reinvention of negative feedback circuits originally conceived
by Harold Black in 1920s.



Representation

The algorithm is centered on the use of semantic networks
(Sowa 1991) for encoding evolving memotypes. An impor-
tant characteristic of a semantic network is whether it is def-
initional or assertional: in definitional networks the empha-

sis is on taxonomic relations (e.g. IsA(bird, animal)’) de-
scribing a subsumption hierarchy that 1s true by definition;
in assertional networks, relations describe instantiations that
are contingently true (e.g. AtLocation(human, city)). In
this study we combine the two approaches for increased ex-
pressivity. As such, semantic networks provide a simple
yet powerful means to represent the “memes” of Dawkins
as data structures that are algorithmically manipulatable, al-
lowing a procedural implementation of memetic evolution.

In terms of representation, our approach is similar to sev-
eral existing graph-based encodings of individuals in EA.
The most notable is genetic programming (GP) (Koza et
al. 2003)), where candidate solutions are computer programs
represented in a tree hierarchy. Montes and Wyatt (2004)
present a detailed overview of graph-based EA techniques
besides GP, which include parallel distributed genetic pro-
gramming (PDGP), genetic network programming (GNP),
evolutionary graph generation, and neural programming.

Using a graph-based representation makes the design of
variation operators specific to graphs necessary. In works
such as GNP, this is facilitated by using a string-based en-
coding of node types and connectivity, permitting operators
very close to their counterparts in conventional EA; and in
PDGP, operations are simplified by making nodes occupy
points in a fixed-size two-dimensional grid. What is com-
mon with GP related algorithms is that the output of each
node in the graph can constitute an input to another node.
In comparison, the range of connections that can form a se-
mantic network of a given set of concepts is limited by com-
monsense knowledge, i.e. the relations have to make sense
to be useful (e.g. IsA(bird, animal) is meaningful while
Causes(bird, table) is not). To address this issue, we in-
troduce new crossover and mutation operations for memetic
variation, making use of commonsense reasoning (Mueller
2006)) and adapted to work on semantic networks.

Commonsense Knowledge Bases Commonsense reason-
ing refers to the type of reasoning involved in everyday
thinking, based on commonsense knowledge that an ordinary
person is expected to know, or “the knowledge of how the
world works” (Mueller 2006). Knowledge bases such as the
ConceptNeﬂ project of MIT Media Lab (Havasi, Speer, and

Alonso 2007) and Cyq’|maintained by Cycorp company are
set up to assemble and classify commonsense information.
The lexical database WordNef’| maintained by the Cognitive
Science Laboratory at Princeton University also has charac-
teristics of a commonsense knowledge base, via synonym,
hypernynﬂ and hyponynﬂ relations (Fellbaum 1998).

In our implementation we make use of ConceptNet ver-
sion 4 and WordNet version 3 to process commonsense
knowledge, where ConceptNet contributes around 560,000

Here we adopt the notation IsA(bird, animal) to mean that
the concepts bird and animal are connected by the directed rela-
tion IsA, i.e. “bird is an animal.”

®http://conceptnet .media.mit.edu

"nttp://www.cyc.com

$http://wordnet .princeton.edu

°Y is a hypernym of X if every X is a (kind of) Y
(IsA(dog, canine)).

19Y is a hyponym of X if every Y is a (kind of) X.

definitional and assertional relations involving 320,000 con-
cepts and WordNet contributes definitional relations involv-

ing around 117,000 synset The hypernym and hyponym
relations among noun synsets in WordNet provide a reliable
collection of IsA relations. In contrast, the variety of as-
sertions in ConceptNet, contributed by volunteers across the
world, makes it more prone to noise. We address this by ig-
noring all assertions with a reliability score (determined by
contributors’ voting) below a set minimum R, ,, (Table[T).

Initialization

At the start of each run of the algorithm, the popu-
lation of size Popsi.. 1s initialized with individuals
created by random semantic network generation (Algo-
rithm . This is achieved by starting from a network
comprising only one concept randomly picked from
commonsense knowledge bases and running a semantic
network expansion algorithm that (1) randomly picks a
concept in the given network (e.g. human); (2) com-
piles a list of relations—from commonsense knowledge
bases—that the picked concept can be involved in (e.g.
{CapableO f(human, think), Desires(human, eat), - - -})
(3) appends to the network a relation randomly picked from
this list, together with the other involved concept; and (4)
repeats this until a given number of concepts has been
appended or a set timeout 7" has been reached (covering
situations where there are not enough relations). Note that
even if grown in a random manner, the resulting network
itself is totally meaningful and consistent because it is a
combination of rational information from commonsense
knowledge bases.

The initialization algorithm depends upon the parame-
ters of C),q2, the maximum number of initial concepts, and
Rin, the minimum ConceptNet relation score (Table E])

Fitness Measure

Since the individuals in our approach represent knowledge,
or memes, the fitness for evolutionary selection is defined
as a function of the represented knowledge. For the auto-
mated generation of analogies through evolution, we intro-
duce a memetic fitness based on analogical similarity with
a given semantic network, utilizing the Structure Mapping
Engine (SME) (Falkenhainer, Forbus, and Gentner 1989;
Gentner and Markman 1997). Taking the analogical match-
ing score from SME as the fitness, our algorithm can evolve
collections of information that are analogous to a given one.

In SME, an analogy is a one-to-one mapping from the
base domain into the target domain, which correspond, in
our fitness measure, to the semantic network supplied at the
start and the individual networks whose fitnesses are evalu-
ated by the function. The mapping is guided by the structure
of relations between concepts in the two domains, ignoring
the semantics of the concepts themselves; and is based on
the systematicity principle, where connected knowledge is
preferred over independent facts and is assigned a higher
matching score. As an example, the Rutherford—Bohr atom
and Solar System analogy (Gentner and Markman 1997)
would involve a mapping from sun and planet in the
first domain to nucleus and electron in the second do-
main. The labels and structure of relations in the two do-
mains (e.g. {Attracts(sun, planet), Orbits(planet, sun),

---} and {Attracts(nucleus, electron), Orbits(electron,

A synset is a set of synonyms that are interchangeable with-
out changing the truth value of any propositions in which they are
embedded.
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nucleus), - - -}) define and constrain the possible mappings
between concepts that can be formed by SME.

We make use of our own implementation of SME based
on the original description by Falkenhainer et al. (1989) and
adapt it to the simple concept-relation structure of seman-
tic networks, by mapping the predicate calculus constructs
of entities into concepts, relations to relations, attributes to
1sA relations, and excluding functions.

Selection

After assigning fitness values to all individuals in the current
generation, these are replaced with offspring generated by
variation operators on parents. The parents are probabilisti-
cally selected from the population according to their fitness,
with reselection allowed. While individuals with a higher
fitness have a better chance of being selected, even those
with low fitness have a chance to produce offspring, however
small. In our experiments we employ tournament selection
(Coello Coello, Lamont, and Van Veldhuizen 2007), mean-
ing that for each selection, a “tournament” 1s held among a
few randomly chosen individuals, and the more fit individual
of each successive pair is the winner according to a winning
probability (Table.

In each cycle of algorithm, crossover is applied to parents
selected from the population until Popy;,. X P. offspring are
created (Table[1). Mutation is applied to Popg;.. X Py, se-
lected individuals, supplying the remaining part of the next
generation (i.e. P. 4+ P,, = 1). We also employ elitism,
by replacing a randomly picked offspring in next generation
with the individual with the current best fitness.

Variation Operators

In contrast with existing graph-based evolutionary ap-
proaches that we have mentioned, our representation does
not permit arbitrary connections between different nodes
and requires variation operators that should be based on
information provided by commonsense knowledge bases.
This means that any variation operation on the individu-
als should: (1) preserve the structure within boundaries set
by commonsense knowledge; and (2) ensure that even ver-
tices and edges randomly introduced into a semantic net-
work connect to existing ones through meaningful and con-

sistent relation@
Here we present commonsense crossover and mutation
operators specific to semantic networks.

Commonsense Crossover In classical EA, features repre-
senting individuals are commonly encoded as linear strings
and the crossover operation simulating genetic recombina-
tion is simply a cutting and merging of this one dimensional
object from two parents. In graph-based approaches such
as GP, subgraphs can be freely exchanged between parent
graphs (Koza et al. 2003; Montes and Wyatt 2004). Here, as
mentioned, the requirement that a semantic network has to
make sense imposes significant constraints on the nature of
recombination.

We introduce two types of commonsense crossover that
are tried in sequence by the variation algorithm. The first
type attempts a sub-graph interchange between two selected
parents similar to common crossover in standard GP; and
where this is not feasible due to the commonsense structure
of relations forming the parents, the second type falls back
to a combination of both parents into a new offspring.

It should be noted that we depend on the meaningfulness and
consistency (i.e. compatibility of relations with others involving
the same concepts) of information in the commonsense knowledge
bases, which should be ensured during their maintenance.

Type I (subgraph crossover): A pair of concepts, one

from each parent, that are interchangeablﬂ are selected
as crossover concepts, picked randomly out of all possible
such pairs. For instance, in Figure [I} bird and airplane
are interchangeable, since they can replace each other in
the relations CapableOf(-, fly) and AtLocation(-, air).
In each parent, a subgraph is formed, containing: (1)
the crossover concept; (2) the set of all relations, and
associated concepts, that are not common with the other
crossover concept (In Figure |1| (a), HasA(bird, feather)
and  AtLocation(bird, forest); and in (b)
HasA(airplane, propeller), MadeO f(airplane, metal),
and UsedFor(airplane,travel)); and (3) the set of all
relations and concepts connected to these (In Figure E] (a)
PartOf(feather,wing) and PartO f(tree, forest); and
in (b) MadeO f(propeller,metal)), excluding the ones
that are also one of those common with the other crossover
concept (the concept fly in Figure[](a), because of the rela-
tion CapableO f (-, fly)). This, in effect, forms a subgraph
of information specific to the crossover concept, which is
insertable into the other parent. Any relations between the
subgraph and the rest of the network not going through the
crossover concept are severed (e.g. UsedFor(wing, fly) in
Figure (1| (a)). The two offspring are formed by exchanging
these subgraphs between the parent networks (Figure |1 (c)
and (d)).

Type 11 (graph merging crossover): A concept from each
parent that is attachabld | to the other parent is selected as
a crossover concept. The two parents are merged into an
offspring by attaching a concept in one parent to another
concept in the other parent, picked randomly out of all pos-
sible attachments (Created By(art, human) in Figure
Another possibility is Desires(human, joy).). The second
offspring is formed randomly the same way. In the case that
no attachable concepts are found, the parents are merged as
two separate clusters within the same semantic network.

Commonsense Mutation We introduce several types of
commonsense mutation operators that modify a parent by
means of information from commonsense knowledge bases.
For each mutation to be performed, the type is picked at ran-
dom with uniform probability. If the selected type of muta-
tion is not feasible due to the commonsense structure of the
parent, another type is again picked. In the case that a set
timeout of 7' trials has been reached without any operation,
the parent is returned as it is.

Type I (concept attachment): A new concept randomly
picked from the set of concepts attachable to the parent is
attached through a new relation to one of existing concepts
(Figure[3] (a) and (b)).

Type Illa (relation addition): A new relation connecting
two existing concepts in the parent is added, possibly con-
necting unconnected clusters within the same network (Fig-
ure3](c) and (d)).

Type IIb (relation deletion): A randomly picked relation
in the parent is deleted, possibly leaving unconnected clus-
ters within the same network (Figure (e) and (f)).

Type Illa (concept addition): A randomly picked new

3We define two concepts from different semantic networks as
interchangeable if both can replace the other in all, or part, of
the relations the other is involved in, queried from commonsense
knowledge bases.

14We define a distinct concept as attachable to a semantic net-
work if at least one commonsense relation connecting the concept
to any of the concepts in the network can be discovered from com-
monsense knowledge bases.



PartOf

(c) Offspring 1

(d) Offspring 2

Figure 1: Commonsense crossover type I (subgraph crossover), centered on the concepts of bird for parent 1 and airplane for

parent 2.

(a) Parent 1

(b) Parent 2

(c) Offspring

Figure 2: Commonsense crossover type I (graph merging crossover), merging by the relation C'reated By(art, human). If no
concepts attachable through commonsense relations are encountered, the offspring is formed by merging the parent networks

as two separate clusters within the same semantic network.

concept is added to the parent as a new cluster (Figure
() and (h)).

Type 111D (concept deletion): A randomly picked concept
is deleted with all the relations it is involved in, possibly
leaving unconnected clusters within the same network (Fig-
ure 3] (i) and (j)).

Type IV (concept replacement): A concept in the parent,
randomly picked from the set of those with at least one inter-
changeable concept, is replaced with one (randomly picked)
of its interchangeable concepts. Any relations left unsatis-
fied by the new concept are deleted (Figure (3| (k) and (1)).

Results and Discussion

In this introductory study, we adopt values for crossover
and mutation probabilities similar to earlier studies in graph-
based EA (Koza et al. 2003; Montes and Wyatt 2004)) (Ta-

ble [T). We use a crossover probability of P, = 0.85, and
a somewhat-above-average mutation rate of P,, = 0.15,
accounting for the high tendency of mutation postulated in

memetic literatur In our experiments, we subject a pop-
ulation of Popg;,. = 200 individuals to tournament selec-
tion with tournament size S;,. = 8 and winning probability
Sprob = 0.8.

Using this parameter set, we present the results from two
runs of experiment: evolved analogies for a network de-
scribing some basic astronomical knowledge are shown in
Figure%] and for a network of familial relations in Figure 3
We show in Figure?](a) the progress of the best and average
fitness in the population during the run that produced the
results in Figure [4] The best and average size of semantic

13See Gil-White (Gil-White 2008) for a review and discussion
of mutation in memetics.



HasProperty

(i) Mutation type IIIb (before) (j) Mutation type IIIb (after)

(g) Mutation type Illa (before)

(k) Mutation type IV (before)

(d) Mutation type Ila (after)

HasProperty

UsedFor

AtLocation

(1) Mutation type IV (after)

Figure 3: Examples illustrating the types of commonsense mutation used in this study.

networks forming the individuals are shown in Figure 6| (b).
We observe that evolution asymptotically reaches a fitness
plateau after about 40 generations. This coincides roughly
with the point where the size of the best individual (13-14)
becomes comparable with that of the given base semantic
network (11, in Figure Ef[) after which improvements in the
one-to-one analogy become sparser and less feasible. We
also note that, between generations 21-34, the best network
size actually gets smaller, demonstrating the possibility of
improvement in network configuration without adding fur-
ther nodes. Our experiments demonstrate that the proposed
algorithm is capable of spontaneously creating collections
of knowledge analogous to the one given in a base seman-
tic network, with very good performance. In most cases, our
implementation was able to reach extensive analogies within
50 generations and reasonable computational time.

From an analogical reasoning viewpoint, the algorithm
achieves the generation of diverse novel cases analogous
to a given case. Compared with the Kilaza model of
O’Donoghue (2004) for finding novel analogous cases,
which works by evaluating possible analogies to a given
target case from a collection of candidate source domains
that are assumed to be available, our approach is capable
of open-ended and spontaneous creation of analogous cases
from the ground up, replicating an essential mode of creative
behavior observed in psychology (Clement 1988).

An important result is that, even if the use of common-
sense knowledge in our algorithm was prompted by con-
cerns that are practical in nature (i.e. restrictions on the
meaningfulness and consistency of memetic variation by
the introduced crossover and mutation operators), it even-
tually serves to tackle a very fundamental and long-standing

Table 1: Parameters used during experiments

Parameter Value
Evolution Population size (Pops;_.e) 200
Crossover probability (P,) 0.85
Mutation probability (P,,) 0.15
Semantic ~ Max. initial concepts (Ciqz) 5
networks Min. relation score (R,,iyn) 2.0
Timeout (1") 10
Selection Type Tournament
Tournament size (Sg;ze) 8
Tournament win prob. (Spo) 0.8
Elitism Employed

problem in computational creativity: as put forth by Boden
(2009), “no current Al system has access to the rich and sub-
tly structured stock of concepts that any normal adult human
being has built up over a lifetime” and “what’s missing, as
compared with the human mind, is the rich store of world
knowledge (including cultural knowledge) that’s often in-
volved.” We believe that the inherent commonsense reason-
ing element in our approach provides a means to address
this criticism of lack of world knowledge in computational
approaches to creativity.

Conclusions and Future Work

We have presented a novel evolutionary algorithm that em-
ploys semantic networks as evolving individuals, paralleling
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(b) Evolved individual, 9 concepts, 9 relations (target domain)

Figure 4: Experiment 1: The evolved individual is encoun-
tered after 35 generations, with fitness value 2.8. Concepts
and relations of the individual not involved in the analogy
are not shown here for clarity.

the model of cultural evolution in the field of memetics. This
algorithm, to our knowledge, is the first of its kind. The use
of semantic networks provides a suitable basis for imple-
menting variation and selection of memes as put forth by
Dawkins (Dawkins 1989). We have introduced preliminary
versions of variation operators that work on this represen-
tation, utilizing knowledge from commonsense knowledge
bases. We have also contributed a memetic fitness measure
based on the structure mapping theory from psychology.

Even if it is an intuitive fact that human culture and
knowledge are evolving with time, existing models of cul-
ture, in their current state, are too minimalistic and weak in
their descriptions of individual creativity and novelty; and
conversely, theories modeling individual creativity lack con-
sideration of cultural transmission and replication (Gabora
1997). We believe that studies exploring creativity with evo-
Iutionary approaches have the potential for bridging this gap.

In future work, an interesting possibility is to start the
random semantic network generation procedure with sev-
eral given concepts, allowing the discovery of cases formed
around a particular set of seed concepts. The simple fitness
function used in this introductory study can be extended to
take graph-theoretical properties of semantic networks into
account, such as the number of nodes or edges, shortest path
length, or the clustering coefficient. The research would
also benefit from exploring different types of mutation and
crossover, and grounding the design of such operators on

perform glissando

(b) Evolved individual, 10 concepts, 9 relations (target domain)

Figure 5: Experiment 2: The evolved individual is encoun-
tered after 42 generations, with fitness value 2.7. Concepts
and relations of the individual not involved in the analogy
are not shown here for clarity.

existing theories of cultural transmission and variation, dis-
cussed in sociological theories of knowledge.

A direct and very interesting application of our approach
would be to devise experiments with realistically formed
fitness functions modeling selectionist theories of knowl-
edge, which remain untested until this time. One such the-
ory is the evolutionary epistemology of Campbell (Bick-
hard and Campbell 2003), describing the development of
human knowledge and creativity through selectionist princi-
ples such as blind variation and selective retention (BVSR).

Acknowledgments

This work was supported by a JAE-Predoc fellowship from
CSIC, and the research grants: 2009-SGR-1434 from the
Generalitat de Catalunya, CSD2007-0022 from MICINN,
and Next-CBR TIN2009-13692-C03-01 from MICINN.

References

[Bickhard and Campbell 2003] Bickhard, M. H., and Camp-
bell, D. T. 2003. Variations in variation and selection: the
ubiquity of the variation-and-selective-retention ratchet in
emergent ogranizational complexity. Foundations of Science
8:215-2182.

[Boden 2004] Boden, M. A. 2004. The Creative Mind:
Myths and Mechanisms. London: Routledge, second edi-
tion.



3.0

25F

20

2 15F
Z
10F o°
osf °
ook L L L L L
0 10 20 30 40 50
Generations (t)
(a)
20
[
N 15}
2 ©80 © ,° °  eesescssscssccss
g .................
0o
g o 8.°
S 10 .gd
2 :
sf
(] L L L L 1
0 10 20 30 40 50
Generations (t)
(b)

Figure 6: Evolution of (a) fitness and (b) semantic network
size during the course of an experiment with parameters
given in Table[I] Filled circles represent the best individual
in a generation, empty circles represent population average.
Network size is taken to be the number of relations (edges).

[Boden 2009] Boden, M. A. 2009. Computer models of cre-
ativity. Al Magazine 30(3):23-34.
[Clement 1988] Clement, J. 1988. Observed methods for

generating analogies in scientific problem solving. Cogni-
tive Science 12:563-586.

[Coello Coello, Lamont, and Van Veldhuizen 2007] Coello
Coello, C. A.; Lamont, G. B.; and Van Veldhuizen, D. A.
2007. Evolutionary Algorithms for Solving Multi-Objective
Problems. Springer.

[Dawkins 1989] Dawkins, R. 1989. The Selfish Gene. Ox-
ford University Press.

[Dennett 1995] Dennett, D. C. 1995. Darwin’s Dangerous
Idea: Evolution and the Meanings of Life. Simon & Schus-
ter.

[Falkenhainer, Forbus, and Gentner 1989] Falkenhainer, B.;
Forbus, K. D.; and Gentner, D. 1989. The Structure-
Mapping Engine: Algorithm and examples. Artificial In-
telligence 41:1-63.

[Fauconnier and Mark 2002] Fauconnier, G., and Mark, T.
2002. The Way We Think: Conceptual Blending and the
Mind’s Hidden Complexities. New York: Basic Books.

[Fellbaum 1998] Fellbaum, C. 1998. WordNet: An Elec-
tronic Lexical Database. MIT Press.

[French 2002] French, R. M. 2002. The computational
modeling of analogy-making. Trends in Cognitive Sciences
6(5):200-205.

[Gabora 1997] Gabora, L. 1997. The origin and evolution of

culture and creativity. Journal of Memetics — Evolutionary
Models of Transmission 1.

[Gentner and Markman 1997] Gentner, D., and Markman,
A. B. 1997. Structure mapping in analogy and similarity.
American Psychologist 52:45-56.

[Gil-White 2008] Gil-White, F. 2008. Let the meme be (a
meme): insisting too much on the genetic analogy will turn
it into a straightjacket. In Botz-Bornstein, T., ed., Culture,
Nature, Memes. Newcastle upon Tyne: Cambridge Scholars.

[Havasi, Speer, and Alonso 2007] Havasi, C.; Speer, R.; and
Alonso, J. 2007. ConceptNet 3: a flexible, multilingual se-
mantic network for common sense knowledge. In Proceed-
ings of Recent Advances in Natural Language Processing.

[Hofstadter 1995] Hofstadter, D. R. 1995. Fluid concepts
and creative analogies: Computer models of the fundamen-
tal mechanisms of thought. New York: Basic Books.

[Hofstadter 2001] Hofstadter, D. 2001. Analogy as the core
of cognition. In Gentner, D.; Holyoak, K. J.; and Kokinov,
B., eds., Analogical Mind: Perspectives From Cognitive Sci-
ence. Cambridge, MA: MIT Press. 499-538.

[Holyoak and Thagard 1996] Holyoak, K. J., and Thagard, P.
1996. Mental Leaps: Analogy in Creative Thought. Brad-
ford Books.

[Koza et al. 2003] Koza, J. R.; Keane, M. A.; Streeter, M. J.;
Mydlowec, W.; Yu, J.; and Lanza, G. 2003. Genetic Pro-
gramming IV: Routine Human-Competitive Machine Intelli-
gence. Kluwer Academic Publishers.

[Montes and Wyatt 2004] Montes, H. A., and Wyatt, J. L.
2004. Graph representation for program evolution: An
overview. Technical report, University of Birmingham
School of Computer Science.

[Moscato, Cotta, and Mendes 2004] Moscato, P. A.; Cotta,
C.; and Mendes, A. 2004. Studies in Fuzziness and Soft
Computing — New Optimization Techniques in Engineering.
New York: Springer. chapter Memetic Algorithms.

[Mueller 2006] Mueller, E. T. 2006. Commonsense Reason-
ing. Morgan Kaufmann.

[O’Donoghue 2004] O’Donoghue, D. 2004. Finding Novel
Analogies. Ph.D. Dissertation, University College Dublin,
Department of Computer Science, Dublin, Ireland.

[Pereira 2007] Pereira, F. C. 2007. Creativity and Artificial
Intelligence: A Conceptual Blending Approach. New York:
Mouton de Gruyter.

[Romero and Machado 2008] Romero, J. J., and Machado, P.
2008. The Art of Artificial Evolution: A Handbook on Evo-
lutionary Art and Music. Springer.

[Simonton 2003] Simonton, D. K. 2003. Scientific creativity
as constrained stochastic behavior: The integration of prod-

uct, person, and process perspectives. Psychological Bul-
letin 129(4):475-494.

[Sowa 1991] Sowa, J. E. 1991. Principles of Semantic Net-
works: Explorations in the Representation of Knowledge.
San Mateo: Mogran Kaufmann.

[Thagard et al. 1990] Thagard, P.; Holyoak, K. J.; Nelson,
G.; and Gochfeld, D. 1990. Analog retrieval by constraint
satisfaction. Artificial Intelligence 46:259-310.

[Veale and Keane 1997] Veale, T., and Keane, M. 1997.
The competence of sub-optimal structure mapping on hard
analogies. In Proceedings of the 15th International Joint
Conference on Al. San Mateo, CA: Morgan Kauffman.

[Ward, Smith, and Vaid 2001] Ward, T. B.; Smith, S. M.; and
Vaid, J. 2001. Creative Thought: An Investigation of Con-
ceptual Structures and Processes. Washington, DC: Ameri-
can Psychological Association.



	Introduction
	Background
	Analogy
	Evolutionary and Memetic Algorithms

	The Algorithm
	Representation
	Initialization
	Fitness Measure
	Selection
	Variation Operators

	Results and Discussion
	Conclusions and Future Work
	Acknowledgments

