
JMLR: Workshop and Conference Proceedings (2014) 1–7 ICML 2014 AutoML Workshop

Automatic Differentiation of Algorithms
for Machine Learning

Atılım Güneş Baydin atilimgunes.baydin@nuim.ie

Barak A. Pearlmutter barak@cs.nuim.ie

Department of Computer Science & Hamilton Institute

National University of Ireland Maynooth, Co. Kildare, Ireland

Abstract
Automatic differentiation—the mechanical transformation of numeric computer programs
to calculate derivatives efficiently and accurately—dates to the origin of the computer
age. Reverse mode automatic differentiation both antedates and generalizes the method
of backwards propagation of errors used in machine learning. Despite this, practitioners
in a variety of fields, including machine learning, have been little influenced by automatic
differentiation, and make scant use of available tools. Here we review the technique of auto-
matic differentiation, describe its two main modes, and explain how it can benefit machine
learning practitioners. To reach the widest possible audience our treatment assumes only
elementary differential calculus, and does not assume any knowledge of linear algebra.

Keywords: Automatic Differentiation, Machine Learning, Optimization

1. Introduction

Many methods in machine learning require the evaluation of derivatives. This is particularly
evident when one considers that most traditional learning algorithms rely on the computa-
tion of gradients and Hessians of an objective function, with examples in artificial neural
networks (ANNs), natural language processing, and computer vision (Sra et al., 2011).

Derivatives in computational models are handled by four main methods: (a) working
out derivatives manually and coding results into computer; (b) numerical differentiation;
(c) symbolic differentiation using computer algebra; and (d) automatic differentiation.

Machine learning researchers devote considerable effort for the manual derivation of an-
alytical derivatives for a novel model they introduce, subsequently using these in standard
optimization procedures such as L-BFGS or stochastic gradient descent. Manual differ-
entiation has the advantage of avoiding approximation errors and instability known to be
present in numerical differentiation, but can be prone to error and labor intensive. Symbolic
computation methods address weaknesses of both manual and numerical methods, but often
result in complex and cryptic expressions plagued with the problem of “expression swell”.

The fourth technique, automatic differentiation (AD)1 works by systematically applying
the chain rule of calculus at the elementary operator level. AD allows accurate evaluation
of derivatives with only a small constant factor of overhead and ideal asymptotic efficiency.
Unlike the need for arranging algorithms into monolithic mathematical expressions for sym-
bolic differentiation, AD can be applied to existing code with minimal change. Owing to

1. Also called “algorithmic differentiation” and less frequently “computational differentiation”.

c© 2014 A.G. Baydin & B.A. Pearlmutter.

ar
X

iv
:1

40
4.

74
56

v1
 [

cs
.L

G
]

 2
8

A
pr

 2
01

4

Baydin Pearlmutter

f(x) =
sin(x + sin(x + sin(x + sin(x))))

f ′(x) = (((cos(x) + 1) cos(x +
sin(x)) + 1) cos(x + sin(x +
sin(x))) + 1) cos(x + sin(x +
sin(x + sin(x))))

f(x):

y = 0

for i = 1 to 4

y = Sin(x + y)

return y

df(x):
return (((Cos(x) + 1) * Cos(x

+ Sin(x)) + 1) * Cos(x +

Sin(x + Sin(x))) + 1) *

Cos(x + Sin(x + Sin(x +

Sin(x))))

df(x0) = f ′(x0)

df(x):

(v, v’) = (x, 1)

(y, y’) = (0, 0)

for i = 1 to 4

y’ = Cos(v + y)*(v’ + y’)

y = Sin(v + y)

return (y, y’)

df(x0) = f ′(x0)

df(x):

return (f(x + h) - f(x)) / h

df(x0) ≈ f ′(x0)

Symbolic
Differentiation
(Human)

Symbolic
Differentiation
(Computer)

Coding

Coding

Numerical
Differentiation

Automatic
Differentiation

(a)

v−1 v0

v1 v2 v3

v4

v5

x1 x2

f(x1, x2)

(b)

Figure 1: (a) Differentiation of mathematical expressions and code. Symbolic differentia-
tion (lower center); numerical differentiation (lower right); AD (upper right). (b)
Computational graph of the example f(x1, x2) = ln(x1) + x1x2 − sin(x2).

this, it is an established tool in applications such as real-parameter optimization (Walther,
2007), sensitivity analysis, and probabilistic inference (Neal, 2011).

Despite its widespread use in other fields, AD has been underused, if not unknown, by
the machine learning community. How relevant AD can be for machine learning tasks is ex-
emplified by the backpropagation method for ANNs, modeling learning as gradient descent
in ANN weight space and utilizing the chain rule to propagate error values. The resulting
algorithm can be obtained by transforming the network evaluation function through reverse
mode AD. Thus, a modest understanding of the mathematics underlying the backpropaga-
tion method gives one already sufficient basis to grasp the technique.

Here we review AD from a machine learning perspective and bring up some possible
applications in machine learning. It is our hope that the review will be a concise introduction
to the technique for machine learning practitioners.

2. What AD Is Not

The term “automatic differentiation” has undertones that it is either symbolic or numerical
differentiation. The output of AD is indeed numerical derivatives, while the steps in its
computation do depend on algebraic manipulation, giving it a two-sided nature partly
symbolic and partly numerical. Let us start by stressing how AD is different from, and in
some aspects superior to, these two commonly encountered techniques (Figure 1 (a)).

AD is not numerical differentiation. Finite difference approximation of derivatives
uses the original function evaluated at sample points. In its simplest form, it uses the stan-

dard definition df(x)
dx = limh→0

f(x+h)−f(x)
h and approximates the left-hand side by evaluating

right-hand side with a small nonzero h. This is easy to implement, but inherently prone to
truncation and round-off errors. Truncation tends to zero as h → 0; however, at the same
time, round-off increases and becomes dominant. Improvements such as higher-order finite
differences or Richardson extrapolation do not completely eliminate approximation errors.

2

Automatic Differentiation of Algorithms for Machine Learning

Table 1: Forward AD example, with y = f(x1, x2) = ln(x1) + x1x2 − sin(x2) at (x1, x2) =
(2, 5) and setting ẋ1 = 1 to compute ∂y/∂x1.

Forward evaluation trace

Automatic Differentiation of Algorithms for Machine Learning

Table 1: Forward AD example, with y = f(x1, x2) = ln(x1) + x1x2 − sin(x2) at (x1, x2) =
(2, 5) and setting ẋ1 = 1 to compute ∂y/∂x1.

Forward evaluation trace
v−1 = x1 = 2
v0 = x2 = 5

v1 = ln v−1 = ln 2
v2 = v−1 × v0 = 2× 5
v3 = sin v0 = sin 5
v4 = v1 + v2 = 0.6931 + 10
v5 = v4 − v3 = 10.6931 + 0.9589

y = v5 = 11.6521

Forward derivative trace
v̇−1 = ẋ1 = 1
v̇0 = ẋ2 = 0

v̇1 = v̇−1/v−1 = 1/2
v̇2 = v̇−1 × v0 + v−1 × v̇0 = 1× 5 + 2× 0
v̇3 = cos v0 × v̇0 = cos 5× 0
v̇4 = v̇1 + v̇2 = 0.5 + 5
v̇5 = v̇4 − v̇3 = 5.5− 0

ẏ = v̇5 = 5.5

AD is not symbolic differentiation. One can generate exact symbolic deriva-
tives through manipulation of expressions via differentiation rules such as d

dx(u(x)v(x)) =
du(x)
dx v(x)+u(x)dv(x)

dx . This perfectly mechanistic process is realized in computer algebra sys-
tems such as Mathematica, Maple, and Maxima. Symbolic results can give insight into the

problem and allow analytical solutions of optima (e.g. df(x)
dx = 0) in which case derivatives

are no longer needed. Then again, they are not always efficient for run-time calculations,
as expressions can get exponentially larger through differentiation (“expression swell”).

3. AD Origins

For accurate numerical derivatives, it is possible to simplify symbolic calculations by only
storing values of intermediate steps in memory. For efficiency, we can interleave, as much
as possible, the differentiation and storage steps. This “interleaving” idea forms the basis
of “Forward Accumulation Mode AD”: apply symbolic differentiation to each elementary
operation, keeping intermediate numerical results, in lockstep with the evaluation of the
original function.

3.1. Forward Mode

All computations are ultimately compositions of a finite set of elementary operations with
known derivatives. Combining derivatives of constituent operations through the chain rule
gives the derivative of the overall composition. In Table 1, we have the example f(x1, x2) =
ln(x1) + x1x2 − sin(x2) represented as an evaluation trace of elementary operations—also
called a Wengert list. Using the “three-part” notation of Griewank and Walther (2008),
a trace of f : Rn → Rm is constructed from (a) vi−n = xi, i = 1, . . . , n input variables,
(b) vi, i = 1, . . . , l working variables, and (c) ym−i = vl−i, i = m− 1, . . . , 0 output variables.
We can also represent a given trace of operations as a data flow graph, as shown in Figure 1
(b), which makes the dependency relations between intermediate variables explicit.

For computing the derivative with respect to, say x1, we associate with each variable
vi a corresponding v̇i = ∂vi

∂x1
. Applying the chain rule to each elementary operation in the

forward trace, we generate the derivative trace on the right-hand side. Evaluating variables
vi one by one together with v̇i gives us the required derivative in the final variable v̇5.

In general, for an f : Rn → Rm with n independent xi as inputs and m dependent yj
as outputs, each forward pass of AD is initialized by setting the derivative of only one of

3

v−1 = x1 = 2
v0 = x2 = 5

v1 = ln v−1 = ln 2
v2 = v−1 × v0 = 2× 5
v3 = sin v0 = sin 5
v4 = v1 + v2 = 0.6931 + 10
v5 = v4 − v3 = 10.6931 + 0.9589

y = v5 = 11.6521

Forward derivative trace

Automatic Differentiation of Algorithms for Machine Learning

Table 1: Forward AD example, with y = f(x1, x2) = ln(x1) + x1x2 − sin(x2) at (x1, x2) =
(2, 5) and setting ẋ1 = 1 to compute ∂y/∂x1.

Forward evaluation trace
v−1 = x1 = 2
v0 = x2 = 5

v1 = ln v−1 = ln 2
v2 = v−1 × v0 = 2× 5
v3 = sin v0 = sin 5
v4 = v1 + v2 = 0.6931 + 10
v5 = v4 − v3 = 10.6931 + 0.9589

y = v5 = 11.6521

Forward derivative trace
v̇−1 = ẋ1 = 1
v̇0 = ẋ2 = 0

v̇1 = v̇−1/v−1 = 1/2
v̇2 = v̇−1 × v0 + v−1 × v̇0 = 1× 5 + 2× 0
v̇3 = cos v0 × v̇0 = cos 5× 0
v̇4 = v̇1 + v̇2 = 0.5 + 5
v̇5 = v̇4 − v̇3 = 5.5− 0

ẏ = v̇5 = 5.5

AD is not symbolic differentiation. One can generate exact symbolic deriva-
tives through manipulation of expressions via differentiation rules such as d

dx(u(x)v(x)) =
du(x)
dx v(x)+u(x)dv(x)

dx . This perfectly mechanistic process is realized in computer algebra sys-
tems such as Mathematica, Maple, and Maxima. Symbolic results can give insight into the

problem and allow analytical solutions of optima (e.g. df(x)
dx = 0) in which case derivatives

are no longer needed. Then again, they are not always efficient for run-time calculations,
as expressions can get exponentially larger through differentiation (“expression swell”).

3. AD Origins

For accurate numerical derivatives, it is possible to simplify symbolic calculations by only
storing values of intermediate steps in memory. For efficiency, we can interleave, as much
as possible, the differentiation and storage steps. This “interleaving” idea forms the basis
of “Forward Accumulation Mode AD”: apply symbolic differentiation to each elementary
operation, keeping intermediate numerical results, in lockstep with the evaluation of the
original function.

3.1. Forward Mode

All computations are ultimately compositions of a finite set of elementary operations with
known derivatives. Combining derivatives of constituent operations through the chain rule
gives the derivative of the overall composition. In Table 1, we have the example f(x1, x2) =
ln(x1) + x1x2 − sin(x2) represented as an evaluation trace of elementary operations—also
called a Wengert list. Using the “three-part” notation of Griewank and Walther (2008),
a trace of f : Rn → Rm is constructed from (a) vi−n = xi, i = 1, . . . , n input variables,
(b) vi, i = 1, . . . , l working variables, and (c) ym−i = vl−i, i = m− 1, . . . , 0 output variables.
We can also represent a given trace of operations as a data flow graph, as shown in Figure 1
(b), which makes the dependency relations between intermediate variables explicit.

For computing the derivative with respect to, say x1, we associate with each variable
vi a corresponding v̇i = ∂vi

∂x1
. Applying the chain rule to each elementary operation in the

forward trace, we generate the derivative trace on the right-hand side. Evaluating variables
vi one by one together with v̇i gives us the required derivative in the final variable v̇5.

In general, for an f : Rn → Rm with n independent xi as inputs and m dependent yj
as outputs, each forward pass of AD is initialized by setting the derivative of only one of

3

v̇−1 = ẋ1 = 1
v̇0 = ẋ2 = 0

v̇1 = v̇−1/v−1 = 1/2
v̇2 = v̇−1 × v0 + v−1 × v̇0 = 1× 5 + 2× 0
v̇3 = cos v0 × v̇0 = cos 5× 0
v̇4 = v̇1 + v̇2 = 0.5 + 5
v̇5 = v̇4 − v̇3 = 5.5− 0

ẏ = v̇5 = 5.5

AD is not symbolic differentiation. One can generate exact symbolic deriva-
tives through manipulation of expressions via differentiation rules such as d

dx(u(x)v(x)) =
du(x)
dx v(x)+u(x)dv(x)

dx . This perfectly mechanistic process is realized in computer algebra sys-
tems such as Mathematica, Maple, and Maxima. Symbolic results can give insight into the

problem and allow analytical solutions of optima (e.g. df(x)
dx = 0) in which case derivatives

are no longer needed. Then again, they are not always efficient for run-time calculations,
as expressions can get exponentially larger through differentiation (“expression swell”).

3. AD Origins

For accurate numerical derivatives, it is possible to simplify symbolic calculations by only
storing values of intermediate steps in memory. For efficiency, we can interleave, as much
as possible, the differentiation and storage steps. This “interleaving” idea forms the basis
of “Forward Accumulation Mode AD”: apply symbolic differentiation to each elementary
operation, keeping intermediate numerical results, in lockstep with the evaluation of the
original function.

3.1. Forward Mode

All computations are ultimately compositions of a finite set of elementary operations with
known derivatives. Combining derivatives of constituent operations through the chain rule
gives the derivative of the overall composition. In Table 1, we have the example f(x1, x2) =
ln(x1) + x1x2 − sin(x2) represented as an evaluation trace of elementary operations—also
called a Wengert list. Using the “three-part” notation of Griewank and Walther (2008),
a trace of f : Rn → Rm is constructed from (a) vi−n = xi, i = 1, . . . , n input variables,
(b) vi, i = 1, . . . , l working variables, and (c) ym−i = vl−i, i = m− 1, . . . , 0 output variables.
We can also represent a given trace of operations as a data flow graph, as shown in Figure 1
(b), which makes the dependency relations between intermediate variables explicit.

For computing the derivative with respect to, say x1, we associate with each variable
vi a corresponding v̇i = ∂vi

∂x1
. Applying the chain rule to each elementary operation in the

forward trace, we generate the derivative trace on the right-hand side. Evaluating variables
vi one by one together with v̇i gives us the required derivative in the final variable v̇5.

In general, for an f : Rn → Rm with n independent xi as inputs and m dependent yj
as outputs, each forward pass of AD is initialized by setting the derivative of only one of

3

Baydin Pearlmutter

Table 2: Reverse AD example, with y = f(x1, x2) = ln(x1) + x1x2 − sin(x2) at (x1, x2) =
(2, 5). Setting ȳ = 1, ∂y/∂x1 and ∂y/∂x2 are computed in one reverse sweep.

Forward evaluation trace

Baydin Pearlmutter

Table 2: Reverse AD example, with y = f(x1, x2) = ln(x1) + x1x2 − sin(x2) at (x1, x2) =
(2, 5). Setting ȳ = 1, ∂y/∂x1 and ∂y/∂x2 are computed in one reverse sweep.

Forward evaluation trace
v−1 = x1 = 2
v0 = x2 = 5

v1 = ln v−1 = ln 2
v2 = v−1 × v0 = 2× 5

v3 = sin v0 = sin 5
v4 = v1 + v2 = 0.6931 + 10

v5 = v4 − v3 = 10.6931 + 0.9589

y = v5 = 11.6521

Reverse adjoint trace
x̄1 = v̄−1 = 5.5
x̄2 = v̄0 = 1.7163

v̄−1 = v̄−1 + v̄1(∂v1/∂v−1) = v̄−1 + v̄1/v−1 = 5.5
v̄0 = v̄0 + v̄2(∂v2/∂v0) = v̄0 + v̄2 × v−1 = 1.7163
v̄−1 = v̄2(∂v2/∂v−1) = v̄2 × v0 = 5
v̄0 = v̄3(∂v3/∂v0) = v̄3 × cos v0 = −0.2837
v̄2 = v̄4(∂v4/∂v2) = v̄4 × 1 = 1
v̄1 = v̄4(∂v4/∂v1) = v̄4 × 1 = 1
v̄3 = v̄5(∂v5/∂v3) = v̄5 × (−1) = −1
v̄4 = v̄5(∂v5/∂v4) = v̄5 × 1 = 1

v̄5 = ȳ = 1

inputs ẋi = 1. With given values of xi, a forward run would then compute derivatives of

ẏj =
∂yj
∂xi
, j = 1, . . . ,m. Forward mode is ideal for functions f : R→ Rm, as all the required

derivatives
∂yj
∂x can be calculated with one forward pass. Conversely, in the other extreme of

f : Rn → R, forward mode would require n forward passes to compute all ∂y
∂xi

. In general,
for f : Rn → Rm where n� m, reverse AD is faster.

3.2. Reverse Mode

Like its familiar cousin backpropagation, reverse AD works by propagating derivatives back-

ward from an output. It does this by supplementing each vi with an adjoint v̄i =
∂yj
∂vi

rep-
resenting the sensitivity of output yj to vi. Derivatives are found in two stages: First, the
original function is evaluated forward, computing vi that will be subsequently needed. Sec-
ond, derivatives are calculated in reverse by propagating v̄i from the output to the inputs.
In Table 2, the backward sweep of adjoints on the right-hand side starts with ∂y

v̄5
= ȳ = 1

and we get both derivatives ∂y
∂x1

and ∂y
∂x2

in just one reverse sweep.
An advantage of reverse mode is that it is significantly less costly to evaluate than

forward mode for functions with a large number of input variables—at least, in terms of
operation count. In the case of f : Rn → R, only one application of reverse mode would
be sufficient to compute all partial derivatives ∂y

∂xi
= x̄i, compared with the n sweeps

that forward mode would need. In general, for an f : Rn → Rm, if time(f) is required
for evaluating f , the time it takes to calculate the m × n Jacobian by forward AD is
O(n time(f)), whereas the same can be done via reverse AD in O(mtime(f)). That is to
say, reverse mode AD performs better when m� n. On the other hand, Forward AD has
only a constant factor overhead in space, while Reverse AD requires storage of intermediate
results which increases its space complexity.

4. Derivatives and Machine Learning

Machine learning applications where computation of derivatives is necessary can include
optimization, regression analysis, ANNs, support vector machines, clustering, and parame-

4

v−1 = x1 = 2
v0 = x2 = 5

v1 = ln v−1 = ln 2
v2 = v−1 × v0 = 2× 5

v3 = sin v0 = sin 5
v4 = v1 + v2 = 0.6931 + 10

v5 = v4 − v3 = 10.6931 + 0.9589

y = v5 = 11.6521

Reverse adjoint trace

Baydin Pearlmutter

Table 2: Reverse AD example, with y = f(x1, x2) = ln(x1) + x1x2 − sin(x2) at (x1, x2) =
(2, 5). Setting ȳ = 1, ∂y/∂x1 and ∂y/∂x2 are computed in one reverse sweep.

Forward evaluation trace
v−1 = x1 = 2
v0 = x2 = 5

v1 = ln v−1 = ln 2
v2 = v−1 × v0 = 2× 5

v3 = sin v0 = sin 5
v4 = v1 + v2 = 0.6931 + 10

v5 = v4 − v3 = 10.6931 + 0.9589

y = v5 = 11.6521

Reverse adjoint trace
x̄1 = v̄−1 = 5.5
x̄2 = v̄0 = 1.7163

v̄−1 = v̄−1 + v̄1(∂v1/∂v−1) = v̄−1 + v̄1/v−1 = 5.5
v̄0 = v̄0 + v̄2(∂v2/∂v0) = v̄0 + v̄2 × v−1 = 1.7163
v̄−1 = v̄2(∂v2/∂v−1) = v̄2 × v0 = 5
v̄0 = v̄3(∂v3/∂v0) = v̄3 × cos v0 = −0.2837
v̄2 = v̄4(∂v4/∂v2) = v̄4 × 1 = 1
v̄1 = v̄4(∂v4/∂v1) = v̄4 × 1 = 1
v̄3 = v̄5(∂v5/∂v3) = v̄5 × (−1) = −1
v̄4 = v̄5(∂v5/∂v4) = v̄5 × 1 = 1

v̄5 = ȳ = 1

inputs ẋi = 1. With given values of xi, a forward run would then compute derivatives of

ẏj =
∂yj
∂xi
, j = 1, . . . ,m. Forward mode is ideal for functions f : R→ Rm, as all the required

derivatives
∂yj
∂x can be calculated with one forward pass. Conversely, in the other extreme of

f : Rn → R, forward mode would require n forward passes to compute all ∂y
∂xi

. In general,
for f : Rn → Rm where n� m, reverse AD is faster.

3.2. Reverse Mode

Like its familiar cousin backpropagation, reverse AD works by propagating derivatives back-

ward from an output. It does this by supplementing each vi with an adjoint v̄i =
∂yj
∂vi

rep-
resenting the sensitivity of output yj to vi. Derivatives are found in two stages: First, the
original function is evaluated forward, computing vi that will be subsequently needed. Sec-
ond, derivatives are calculated in reverse by propagating v̄i from the output to the inputs.
In Table 2, the backward sweep of adjoints on the right-hand side starts with ∂y

v̄5
= ȳ = 1

and we get both derivatives ∂y
∂x1

and ∂y
∂x2

in just one reverse sweep.
An advantage of reverse mode is that it is significantly less costly to evaluate than

forward mode for functions with a large number of input variables—at least, in terms of
operation count. In the case of f : Rn → R, only one application of reverse mode would
be sufficient to compute all partial derivatives ∂y

∂xi
= x̄i, compared with the n sweeps

that forward mode would need. In general, for an f : Rn → Rm, if time(f) is required
for evaluating f , the time it takes to calculate the m × n Jacobian by forward AD is
O(n time(f)), whereas the same can be done via reverse AD in O(mtime(f)). That is to
say, reverse mode AD performs better when m� n. On the other hand, Forward AD has
only a constant factor overhead in space, while Reverse AD requires storage of intermediate
results which increases its space complexity.

4. Derivatives and Machine Learning

Machine learning applications where computation of derivatives is necessary can include
optimization, regression analysis, ANNs, support vector machines, clustering, and parame-

4

x̄1 = v̄−1 = 5.5
x̄2 = v̄0 = 1.7163

v̄−1 = v̄−1 + v̄1(∂v1/∂v−1) = v̄−1 + v̄1/v−1 = 5.5
v̄0 = v̄0 + v̄2(∂v2/∂v0) = v̄0 + v̄2 × v−1 = 1.7163
v̄−1 = v̄2(∂v2/∂v−1) = v̄2 × v0 = 5
v̄0 = v̄3(∂v3/∂v0) = v̄3 × cos v0 = −0.2837
v̄2 = v̄4(∂v4/∂v2) = v̄4 × 1 = 1
v̄1 = v̄4(∂v4/∂v1) = v̄4 × 1 = 1
v̄3 = v̄5(∂v5/∂v3) = v̄5 × (−1) = −1
v̄4 = v̄5(∂v5/∂v4) = v̄5 × 1 = 1

v̄5 = ȳ = 1

inputs ẋi = 1. With given values of xi, a forward run would then compute derivatives of

ẏj =
∂yj
∂xi
, j = 1, . . . ,m. Forward mode is ideal for functions f : R→ Rm, as all the required

derivatives
∂yj
∂x can be calculated with one forward pass. Conversely, in the other extreme of

f : Rn → R, forward mode would require n forward passes to compute all ∂y
∂xi

. In general,
for f : Rn → Rm where n� m, reverse AD is faster.

3.2. Reverse Mode

Like its familiar cousin backpropagation, reverse AD works by propagating derivatives back-

ward from an output. It does this by supplementing each vi with an adjoint v̄i =
∂yj
∂vi

rep-
resenting the sensitivity of output yj to vi. Derivatives are found in two stages: First, the
original function is evaluated forward, computing vi that will be subsequently needed. Sec-
ond, derivatives are calculated in reverse by propagating v̄i from the output to the inputs.
In Table 2, the backward sweep of adjoints on the right-hand side starts with ∂y

v̄5
= ȳ = 1

and we get both derivatives ∂y
∂x1

and ∂y
∂x2

in just one reverse sweep.
An advantage of reverse mode is that it is significantly less costly to evaluate than

forward mode for functions with a large number of input variables—at least, in terms of
operation count. In the case of f : Rn → R, only one application of reverse mode would
be sufficient to compute all partial derivatives ∂y

∂xi
= x̄i, compared with the n sweeps

that forward mode would need. In general, for an f : Rn → Rm, if time(f) is required
for evaluating f , the time it takes to calculate the m × n Jacobian by forward AD is
O(n time(f)), whereas the same can be done via reverse AD in O(mtime(f)). That is to
say, reverse mode AD performs better when m� n. On the other hand, Forward AD has
only a constant factor overhead in space, while Reverse AD requires storage of intermediate
results which increases its space complexity.

4. Derivatives and Machine Learning

Machine learning applications where computation of derivatives is necessary can include
optimization, regression analysis, ANNs, support vector machines, clustering, and parame-

4

Automatic Differentiation of Algorithms for Machine Learning

ter estimation. Let us examine some main uses of derivatives in machine learning and how
these can benefit from the use of AD.

Given a function f : Rn → R, classical gradient descent has the goal of finding a (local)

minimum w∗ = arg minw f(w) via updates ∆w = −η df
dw , where η is the step size. These

methods make use of the fact that f decreases steepest if one goes in the direction of
the negative gradient. For large n, reverse mode AD provides a highly efficient and exact
method for gradient calculation, as we have outlined.

More sophisticated quasi-Newton methods, such as the BFGS algorithm and its variant
L-BFGS, use both the gradient and the Hessian H of a function. In practice, the full
Hessian is not computed but approximated using rank-one updates derived from gradient
evaluations. AD can be used here for efficiently computing an exact Hessian-vector product
Hv, via applying forward mode on a gradient found through reverse mode. Thus, Hv is
computed with O(n) complexity, even though H is a n × n matrix (Pearlmutter, 1994).
Hessians arising in large-scale applications are typically sparse. This sparsity, along with
symmetry, can be exploited by AD techniques such as elimination on computational graph
of the Hessian (Dixon, 1991) or matrix coloring and compression (Gebremedhin et al., 2009).

Another approach for improving the asymptotic rate of convergence of gradient methods
is to use gain adaptation methods such as stochastic meta-descent (SMD), where stochastic
sampling is introduced to avoid local minima. An example using SMD with AD is given
by Vishwanathan et al. (2006) on conditional random fields (CRF), for the probabilistic
segmentation of data.

In ANNs, training is an optimization task with respect to the set of weights, which can in
principle be attacked via any method including stochastic gradient descent or BFGS (Apos-
tolopoulou et al., 2009). As we have pointed out, the highly successful backpropagation
algorithm is a special case of reverse mode AD and there are instances in literature—albeit
few—where ANNs are trained with explicit reference to AD, such as Eriksson et al. (1998)
using AD for large-scale feed-forward networks, and Yang et al. (2008) where AD is used to
train an ANN-based PID controller. Beyond backpropagation, the generality of AD opens
up new possibilities. An example is given for continuous time recurrent neural networks
(CTRNN) by Al Seyab and Cao (2008), where AD is used for training CTRNNs predicting
dynamic behavior of nonlinear processes in real time. AD is used to calculate derivatives
higher than second order, resulting in significantly reduced network training times as com-
pared with other methods.

In computer vision, first and second order derivatives play an important role in tasks
such as edge detection and sharpening (Russ, 2010). However, in most applications, these
fundamental operations are applied on discrete functions of integer coordinates, approx-
imating those derived on a hypothetical continuous spatial image function. As a conse-
quence, derivatives are approximated using numerical differences. On the other hand, some
computer vision tasks can be formulated as minimization of appropriate energy functionals.
This minimization is usually accomplished via calculus of variations and the Euler-Lagrange
equation, opening up the possibility of taking advantage of AD. In this area, the first study
introducing AD to computer vision is given by Pock et al. (2007) which considers denoising,
segmentation, and information recovery from stereoscopic image pairs and notes the benefit
of AD in isolating sparsity patterns in large Jacobian and Hessian matrices. Grabner et al.
(2008) use reverse AD for GPU-accelerated medical 2D/3D registration, a task concerning
the alignment of data from different sources such as X-ray images or computed tomogra-

5

Baydin Pearlmutter

phy. A six-fold increase in speed (compared with numerical differentiation using center
difference) is reported.

Nested applications of AD would facilitate compositional approaches to machine learning
tasks, where one can, for example, perform gradient optimization on a system of many
components that can in turn be internally using other derivatives or performing optimization
(Siskind and Pearlmutter, 2008b; Radul et al., 2012). This capability is relevant to, e.g.,
hyperparameter optimization, where using gradient methods on model selection criteria
has been proposed as an alternative to the established grid search and randomized search
methods. Examples include the application to linear regression and time-series prediction
(Bengio, 2000) and support vector machines (Chapelle et al., 2002).

It is important to note that AD is applicable to not only mathematical expressions in
classical sense, but also algorithms of arbitrary structure, including those with control flow
statements (Figure 1). Computations involving if-statements, loops, and procedure calls
are in the end evaluated as straight-line traces of elementary operations—i.e. conditionals
turned into actual paths taken, loops unrolled, and procedure calls inlined. In contrast,
symbolic methods cannot be applied to such algorithms without significant manual effort.

A concerted effort to generalize AD to make it suitable for a wider range of machine
learning tasks has been undertaken (Pearlmutter and Siskind, 2008). The resulting AD-
enabled research prototype compilers generate very efficient code (Siskind and Pearlmutter,
2008a, also DVL https://github.com/axch/dysvunctional-language/), but these tech-
nologies are not yet available in production-quality systems.

5. Implementations

In practice, AD is used via feeding an existing algorithm into a tool, which augments
it with the corresponding extra code to compute derivatives. This can be implemented
through calls to a library; as a source transformation where a given code is automatically
modified; or through operator overloading, which makes the process transparent to the user.
Implementations exist for most programming languages2 and a taxonomy of tools is given
by Bischof et al. (2008).

6. Conclusions

The ubiquity of differentiation in machine learning renders AD a highly capable tool for
the field. Needless to say, there are occasions where we are interested in obtaining more
than just the numerical values for derivatives. Symbolic methods can be useful for analysis
and gaining insight into the problem domain. However, for any non-trivial function of more
than a handful of variables, analytic expressions for gradients or Hessians increase rapidly
in complexity to render any interpretation unlikely.

Combining the expressive power of AD operators and functional programming would
allow very concise implementations for a range of machine learning applications, which we
intend to discuss in an upcoming article.

2. The website http://www.autodiff.org/ maintains a list of implementations.

6

https://github.com/axch/dysvunctional-language/
http://www.autodiff.org/

Automatic Differentiation of Algorithms for Machine Learning

Acknowledgments

This work was supported in part by Science Foundation Ireland grant 09/IN.1/I2637.

References

R. K. Al Seyab and Y. Cao. Nonlinear system identification for predictive control using continuous time
recurrent neural networks and automatic differentiation. Journal of Process Control, 18(6):568–581, 2008.

M. S. Apostolopoulou, D. G. Sotiropoulos, I. E. Livieris, and P. Pintelas. A memoryless BFGS neural
network training algorithm. In INDIN 2009, pages 216–221, 2009.

Y. Bengio. Gradient-based optimization of hyper-parameters. Neural Computation, 12(8), 2000.

C. H. Bischof, P. D. Hovland, and B. Norris. On the implementation of automatic differentiation tools.
Higher-Order and Symbolic Computation, 21(3):311–31, 2008.

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector
machines. Machine Learning, 46:131–159, 2002.

L. C. Dixon. Use of automatic differentiation for calculating Hessians and Newton steps. In Automatic
Differentiation of Algorithms, pages 114–125. SIAM, 1991.

J. Eriksson, M. Gulliksson, P. Lindström, and P. Wedin. Regularization tools for training large feed-forward
neural networks using automatic differentiation. Optimization Methods and Software, 10(1):49–69, 1998.

A. Gebremedhin, A. Pothen, A. Tarafdar, and A. Walther. Efficient computation of sparse Hessians using
coloring and automatic differentiation. INFORMS Journal on Computing, 21(2):209–23, 2009.

M. Grabner, T. Pock, T. Gross, and B. Kainz. Automatic differentiation for GPU-accelerated 2D/3D
registration. In Advances in Automatic Differentiation, volume 64, pages 259–269. Springer, 2008.

A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of Algorithmic Differenti-
ation. Society for Industrial and Applied Mathematics, 2008.

R. Neal. MCMC for using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo, pages 113–62,
2011.

B. A. Pearlmutter. Fast exact multiplication by the hessian. Neural Computation, 6:147–60, 1994.

B. A. Pearlmutter and J. M. Siskind. Using programming language theory to make AD sound and efficient.
In AD 2008, Bonn, Germany, pages 79–90, 2008.

T. Pock, M. Pock, and H. Bischof. Algorithmic differentiation: Application to variational problems in
computer vision. IEEE Trans. on Pattern Analysis and Machine Intelligence, 29(7):1180–1193, 2007.

A. Radul, B. A. Pearlmutter, and J. M. Siskind. AD in Fortran, Part 1: Design. Technical Report
arXiv:1203.1448, 2012.

J. C. Russ. The Image Processing Handbook. CRC press, 2010.

J. M. Siskind and B. A. Pearlmutter. Using polyvariant union-free flow analysis to compile a higher-
order functional-programming language with a first-class derivative operator to efficient Fortran-like code.
Technical Report TR-ECE-08-01, ECE, Purdue Univ., 2008a.

J. M. Siskind and B. A. Pearlmutter. Nesting forward-mode AD in a functional framework. Higher-Order
and Symbolic Computation, 21(4):361–76, 2008b.

S. Sra, S. Nowozin, and S. J. Wright. Optimization for Machine Learning. MIT Press, 2011.

S. V. N. Vishwanathan, N. N. Schraudolph, M. W. Schmidt, and K. P. Murphy. Accelerated training of
conditional random fields with stochastic gradient methods. In Proceedings of the 23rd International
Conference on Machine Learning (ICML ’06), pages 969–76, 2006.

A. Walther. Automatic differentiation of explicit Runge-Kutta methods for optimal control. Computational
Optimization and Applications, 36(1):83–108, 2007.

W. Yang, Y. Zhao, L. Yan, and X. Chen. Application of PID controller based on BP neural network using
automatic differentiation method. In Advances in Neural Networks, volume 5264, pages 702–711. 2008.

7

	1 Introduction
	2 What AD Is Not
	3 AD Origins
	3.1 Forward Mode
	3.2 Reverse Mode

	4 Derivatives and Machine Learning
	5 Implementations
	6 Conclusions

