Differentiable Functional
Programming

Atilim Gilines Baydin

University of Oxford
http://www.robots.ox.ac.uk/~gunes/

F#unctional Londoners Meetup, April 28, 2016

UNIVERSITY OF

OXFORD

http://www.robots.ox.ac.uk/~gunes/

About me

m Current (from 11 April 2016):
Postdoctoral researcher,
Machine Learning Research Group, University of Oxford
http://www.robots.ox.ac.uk/~parg/

m Previously:
Brain and Computation Lab, National University of Ireland
Maynooth: http://www.bcl.hamilton.ie/

m Working primarily with F#, on algorithmic differentiation,
functional programming, machine learning

1/36

http://www.robots.ox.ac.uk/~parg/
http://www.bcl.hamilton.ie/

Today's talk

m Derivatives in computer programs

m Differentiable functional programming
m DiffSharp + Hype libraries

m Two demos

2/36

Derivatives in computer programs
How do we compute them?

Manual differentiation
f(x) = sin(exp x)

let f x = sin (exp x)

3/36

Manual differentiation
f(x) = sin(exp x)

let f x = sin (exp x)

Calculus 101: differentiation rules

d(fg) df +fdg

dx — dx? " dx
d(af + bg) df ,dg

a%dx TPax

3/36

Manual differentiation
f(x) = sin(exp x)

let f x = sin (exp x)

Calculus 101: differentiation rules

d(fg) df +fdg

dx — dx? " dx
d(af + bg) df ,dg

o % T Pax

f'(x) = cos(expx) x expx

let f7 x = (cos (exp x)) * (exp X)

3/36

Manual differentiation
It can get complicated

f(x) = 64x(1— x)(1 — 2x)?(1 — 8x + 8x?)?
(4th iteration of the logistic map I,.1 = 4, (1 —In), h = x)

let f x =

64xx x (1-x) * ((1 = 2xx) *x 2) x ((1 - 8%x + 8*x*x) *x 2)

4/36

Manual differentiation
It can get complicated

f(x) = 64x(1— x)(1 — 2x)?(1 — 8x + 8x?)?
(4th iteration of the logistic map I,.1 = 4, (1 —In), h = x)

f x =

64xx x (1-x) * ((1 = 2xx) *x 2) x ((1 - 8%x + 8*x*x) *x 2)

F(x) =
128x(1—x)(—8+16x)(1—2x)%(1—8x+8x%)+64(1—x)(1-2x)?(1—8x+
8x2)2 —64x(1—2x)%(1—8x+8x2)? —256x(1—x)(1—2x)(1—8x+8x2)?

7 x = 128%x * (1-x) * (=8+16%x) * (1-2*x)**2 * (1-8*x+8*x*
X) + 64 * (1-x) * (1-2*x)**2 * (1-8xx+8*x*x)**2 — 64*x(1-2%

X)**%2 *x (1-8xx+8*x*x)**2 — 256%xx*(1-x) * (1-2xx) * (1-8*x
+8*X*X)**2

4/36

Symbolic differentiation

Computer algebra packages help: Mathematica, Maple, Maxima

% Untitled-1* - Wolfram Mathematica 10.0 - m} X

File Edit Inset Format Cell Graphics Evaluation Palettes Window Help
nfj= D[64x (1-x) (1-2x)*2 (1-8x+8x"2)"2, x]
ouffj= 128 (1-2x)2 (1-x) x (-8+16%x) (1-8x+8x?%) +
64 (1-2x)% (1-x) (1-8x+8x%)%-
64 (1-2x)2x (1-8x+8x%)2-
256 (1-2x) (1-x) x (1-8x+8x2)2

plot simplify ~ expand factor v/ more 5 =

150% «

5/36

Symbolic differentiation

Computer algebra packages help: Mathematica, Maple, Maxima

1% Untitled-1 * - Wolfram Mathematica 10.0

File Edit Inset Format Cell Graphics Evaluation Palettes Window Help
nfj= D[64x (1-x) (1-2x)*2 (1-8x+8x"2)"2, x]
ouffj= 128 (1-2x)2 (1-x) x (-8+16%x) (1-8x+8x?%) +

64 (1-2x)2(1-x) (1-8x+8x%)%-
64 (1-2x)2x (1-8x+8x%)2-
256 (1-2x) (1-x) x (1-8x+8x2)2

plot simplify ~ expand factor v/ more 5 =

150%

-

But, it has some serious drawbacks

5/36

Symbolic differentiation
We get “expression swell”

Logistic map Ipq = 4In(1 — In), I = x Number of terms

4 600 —
n In ax In R d%ln
1 x 1 500 :
2 4x(1 — x) 4(1 — x) — 4x 400
3 1ex(1—x)(1— 16(1—x)(1—2x)% —
2x)2 1ex(1 — 2x)? 300
64x(1 — x)(1 — 2x)
4 eax(1—x)(1— 128x(1 — x)(—8 + 200
22 (1—8+ 16x)(1—2x)2(1—8x+
8x2)2 8x2) + 64(1— x)(1 — 100 I
2x)2(1—8x+8x%)2 —
64x(1—2x)2(1—8x+ 0 —e i
8x2)2 — 256x(1 — ! ‘ ‘
1 2 5

x)(1— 2x)(1 — 8x +
8x2)?

6/36

Symbolic differentiation

We are limited to closed-form formulae

7/36

Symbolic differentiation

We are limited to closed-form formulae

You can find the derivative of math expressions:
f(x) = 64x(1—x)(1 — 2x)%(1 — 8x + 8x?)?

7/36

Symbolic differentiation

We are limited to closed-form formulae

You can find the derivative of math expressions:
f(x) = 64x(1—x)(1 — 2x)%(1 — 8x + 8x?)?

But not of algorithms, branching, control flow:

=X
i=1ton
v<-4xvx*x(l-v)

7/36

Numerical differentiation

A very common hack:

Use the limit definition of the derivative

daf . f(x+h)—fx)
dx_rlll—% h

8/36

Numerical differentiation

A very common hack:

Use the limit definition of the derivative

daf . f(x+h)—fx)
dx_rlll—% h

to approximate the numerical value of the derivative

let diff f x =

let h = 0.00001
(f (x+h) -f X)) /h

8/36

Numerical differentiation

A very common hack:
Use the limit definition of the derivative

daf . f(x+h)—fx)
dx_rlll—% h

to approximate the numerical value of the derivative

let diff f x =

let h = 0.00001
(f (x+h) -f X)) /h

Again, some serious drawbacks

8/36

Numerical differentiation

We must select a proper value of h
and we face approximation errors

Error
o
100 —
10'2 .
Computed using
10

Truncation error f(x* +h) — f(x*) d

Round-off error
dominant E7,X* =|— — —f(X)|,x
: () i dx ()lx

6
10 dominant

. f(x) = 64x(1 — x)(1 — 2x)%(1 — 8x + 8x%)?
107" —
x* =02

10" 10™ 10™ 10" 10° 107 10° 10° 107

h

9/36

Numerical differentiation

Better approximations exist

m Higher-order finite differences
E.g.
of(x) f(x+ he;) — f(x — he;) 9
ax 2h O

m Richardson extrapolation

m Differential quadrature

but they increase rapidly in complexity and never completely
eliminate the error

10/36

Numerical differentiation

Poor performance:

f: R" — R, approximate the gradient Vf = (g—;, e a%) using

of(x) - f(x + he;) — f(x) 0<h<1
6x,~ h

We must repeat the function evaluation n times for getting Vf

11/36

Algorithmic differentiation (AD)

Algorithmic differentiation

m Also known as automatic differentiation (Griewank & Walther,

2008)

Gives numeric code that computes
the function AND its derivatives at a given point

f(a, b): f’(a, a’>, b, b?):
c=ax*xb (c,) = (axb, a’*b + axb’)
d = sin ¢ (d, d’) = (sin c, c’ * cos c)
return d return (d, d’)

Derivatives propagated at the elementary operation level,
as a side effect, at the same time when the function itself is
computed

— Prevents the “expression swell” of symbolic derivatives

Full expressive capability of the host language
— Including conditionals, looping, branching

12/36

Function evaluation traces

All numeric evaluations are sequences of elementary operations:
a “trace,” also called a “Wengert list” (Wengert, 1964)

f(a, b):
c=ax*hb
if c>0

d = log c
else

d =sin c
return d

13/36

Function evaluation traces

All numeric evaluations are sequences of elementary operations:
a “trace,” also called a “Wengert list” (Wengert, 1964)

f(a, b):
c=ax*hb
if c>0

d = log c
else

d =sin c
return d

f(2, 3)

13/36

Function evaluation traces

All numeric evaluations are sequences of elementary operations:
a “trace,” also called a “Wengert list” (Wengert, 1964)

f(a, b):
c=ax*hb
if c>0

d = log c
else

d =sin c
return d

f(2, 3)

a=2

b =3
c=axb=6
d=1log c =1.791
return d

(primal)

13/36

Function evaluation traces

All numeric evaluations are sequences of elementary operations:
a “trace,” also called a “Wengert list” (Wengert, 1964)

f(a, b):
c=ax*hb
if ¢ >0

d = log c
else

d =sin c
return d

f(2, 3)

a=2

b =3
c=axb=6
d=1log c =1.791
return d

(primal)

*b =6
xb+axb =3
= log c = 1.791
=c’*(1/c)=20.5
return d, d’

2
1
3
0
a
a

o o 0 0 T T o
1]

(tangent)

13/36

Function evaluation traces

All numeric evaluations are sequences of elementary operations:
a “trace,” also called a “Wengert list” (Wengert, 1964)

f(a, b): a=2 a =2

c=ax*hb a’ =1

ifc>0 b =3 b =3

d = log c b’ =0

else c=a*b=6 c =a*xb==¢6

d =sin c c’=a”*b+axb =3

return d d=1log c =1.791 d =1log c=1.791

d>=c¢c % (1/c)=20.5
f(2, 3) return d return d, d’
(primal) (tangent)

i.e., a Jacobian-vector product J¢ (1, 0); 3) = %f(a,b)\(=0.5

2,3)
This is called the forward (tangent) mode of AD

13/36

Function evaluation traces
f(a, b):
c=ax*xhb
ifc>0
d =1log c
else
d =sin ¢
return d

(2, 3)

14/36

Function evaluation traces

f(a, b): a=2
c=ax*xhb b =3
if c>0 c=a*xb=6
d = log c d=1log c =1.791
else return d
d = sin ¢ .
return d (primal)

(2, 3)

14/36

Function evaluation traces

f(a, b):
c=axbhb
if c>0

d =1log c
else

d =sin ¢
return d

(2, 3)

a=2

b =3
c=a=x*xbh
d = 1log c
return d
(primal)

1.791

2
=3
a*xb-=
log ¢ =
v =1
’ d = (1 /
' =¢’ x a-=
a’ =c *xb-=

’

return d, a’,

o0 Qo 0 T w
1l

(adjoint)

14/36

Function evaluation traces

f(a, b): a=2 a =2
c=ax*xhb b =3 b =3
if c>0 c=a*xb=6 c =a*xb=¢6
d = log c d = log c = 1.791 d = 1log c =1.791
else return d d =1
d = sin ¢ . ¢’ =d x (1 /c)=0.166
return d (primal) b’ = ¢’ * a=0.333
a’ =c¢’ *b=20.5
(2, 3) return d, a’, b’
(adjoint)

i.e., a transposed Jacobian-vector product
JZ— (1)‘(273) = Vf|(2’3) = (0.5, 0.333)

This is called the reverse (adjoint) mode of AD

Backpropagation is just a special case of the reverse mode:
code your neural network objective computation, apply reverse AD

14/36

How is this useful?

Forward vs reverse

In the extreme cases,
for F: R — R™, forward AD can compute all (o

for f : R" — R, reverse AD can compute Vf = (g—

in just one evaluation

OFm
)

of

S O

15/36

Forward vs reverse

In the extreme cases,
for F : R — R™, forward AD can compute all (LA %)

for f : R" — R, reverse AD can compute Vf = (5’— . a%)
in just one evaluation

In general, for f : R"” — R™, the Jacobian J € R™*" takes

m O(n x time(f)) with forward AD
m O(m x time(f)) with reverse AD

Reverse mode performs better whenn > m

15/36

How is this useful?

Traditional application domains of AD in industry and academia
(Corliss et al., 2002)

m Computational fluid
dynamics

m Atmospheric chemistry

m Engineering design
optimization
m Computational finance

16/36

Functional AD
or
"Differentiable functional programming”

AD and functional programming

AD has been around since the 1960s
(Wengert, 1964; Speelpenning, 1980; Griewank, 1989)

The foundations for AD in a functional framework
(Siskind and Pearlmutter, 2008; Pearlmutter and Siskind, 2008)

With research implementations
m R6RS-AD
https://github.com/qobi/R6RS-AD

m Stalingrad
http://www.bcl.hamilton.ie/~qobi/stalingrad/

m Alexey Radul’'s DVL
https://github.com/axch/dysvunctional-language

m Recently, my DiffSharp library
http://diffsharp.github.io/DiffSharp/

17/36

https://github.com/qobi/R6RS-AD
http://www.bcl.hamilton.ie/~qobi/stalingrad/
https://github.com/axch/dysvunctional-language
http://diffsharp.github.io/DiffSharp/

Differentiable functional programming

Deep learning: neural network models are assembled from
building blocks and trained with backpropagation

18/36

Differentiable functional programming

Deep learning: neural network models are assembled from
building blocks and trained with backpropagation

Traditional:

m Feedforward
m Convolutional
m Recurrent

>3 — L our

18/36

Differentiable functional programming
Newer additions:

Make algorithmic elements continuous and differentiable
— enables use in deep learning

o N S |
- 1= NTM on copy task

(Graves et al. 2014)
- RN S |
Time t .

m Neural Turing Machine (Graves et al., 2014)
— can infer algorithms: copy, sort, recall
m Stack-augmented RNN (Joulin & Mikolov, 2015)
m End-to-end memory network (Sukhbaatar et al., 2015)
m Stack, queue, deque (Grefenstette et al., 2015)
m Discrete interfaces (Zaremba & Sutskever, 2015)

19/36

Differentiable functional programming

Stacking of many layers, trained through backpropagation

AlexNet, 8 layers (ILSVRC 2012)

(He, Zhang, Ren, Sun. “Deep Residual Learning for Image Recognition.” 2015. arXiv:1512.03385)

20/36

Differentiable functional programming

One way of viewing deep learning systems is
“differentiable functional programming”

Two main characteristics:

m Differentiability A’a\\\
— optimization ' -

m Chained function composition
— successive

. g:A— B
transformations B
—s successive levels of f:B=
distributed representations feg:A=C

(Bengio 2013)
— the chain rule of calculus
propagates derivatives

21/36

The bigger picture

In a functional interpretation
m Weight-tying or multiple applications of the same neuron
(e.g., ConvNets and RNNs) resemble function abstraction
m Structural patterns of composition resemble
higher-order functions (e.g., map, fold, unfold, zip)

Output
sequence

Hidden
units

Input
sequence

fold unfold

(e.g., sentiment analysis) (e.g., image captioning)
22/36

The bigger picture

Even when you have complex compositions,
differentiability ensures that they can be trained end-to-end
with backpropagation

Viion _Language | |A group of people
Deep CNN Generating shopping at an
RNN outdoor market.

S >
| @ There are many
vegetables at the

fruit stand.

(Vinyals, Toshev, Bengio, Erhan. “Show and tell: a neural image caption generator.” 2014. arXiv:1411.4555)

23/36

The bigger picture

Christopher Olah’s blog post (September 3, 2015)
http://colah.github.io/posts/2015-09-NN-Types-FP/

“The field does not (yet) have a unifying insight or narrative”
David Dalrymple’s essay (January 2016)
http://edge.org/response-detail/26794

“The most natural playground ... would be a new language that can
run back-propagation directly on functional programs.”

24/36

http://colah.github.io/posts/2015-09-NN-Types-FP/
http://edge.org/response-detail/26794

The bigger picture

Christopher Olah’s blog post (September 3, 2015)
http://colah.github.io/posts/2015-09-NN-Types-FP/

“The field does not (yet) have a unifying insight or narrative”
David Dalrymple’s essay (January 2016)
http://edge.org/response-detail/26794

“The most natural playground ... would be a new language that can
run back-propagation directly on functional programs.”

AD in a functional framework is a manifestation of this vision.

24/36

http://colah.github.io/posts/2015-09-NN-Types-FP/
http://edge.org/response-detail/26794

DiffSharp

The ambition

m Deeply embedded AD (forward and/or reverse)
as part of the language infrastructure

m Rich API of differentiation operations
as higher-order functions

m High-performance matrix operations for deep learning
(GPU support, model and data parallelism), gradients,
Hessians, Jacobians, directional derivatives, matrix-free
Hessian- and Jacobian-vector products

25/36

http://diffsharp.github.io/DiffSharp/

The ambition

m Deeply embedded AD (forward and/or reverse)
as part of the language infrastructure

m Rich API of differentiation operations
as higher-order functions

m High-performance matrix operations for deep learning
(GPU support, model and data parallelism), gradients,
Hessians, Jacobians, directional derivatives, matrix-free
Hessian- and Jacobian-vector products

| have been working on these issues with Barak Pearlmutter
and created DiffSharp:

http://diffsharp.github.io/DiffSharp/

25/36

http://diffsharp.github.io/DiffSharp/

DiffSharp

“Generalized AD as a first-class function in an augmented
A-calculus” (Pearlmutter and Siskind, 2008)

Forward, reverse, and any nested combination thereof,
instantiated according to usage scenario

Nested lambda expressions with free-variable references
min (AX . (f x) + min (\y . g x y))

let m = min (fun x => (f x) + min (fun y => g (x y)))

26/36

DiffSharp

“Generalized AD as a first-class function in an augmented
A-calculus” (Pearlmutter and Siskind, 2008)

Forward, reverse, and any nested combination thereof,
instantiated according to usage scenario

Nested lambda expressions with free-variable references
min (AX . (f x) + min (\y . g x y))

let m = min (fun x => (f x) + min (fun y => g (x y)))

Must handle “perturbation confusion” (Manzyuk et al., 2012)

A4y
dx dy y =1

?

1

x=1

let d = diff (fun x => x * (diff (funy > x +y) 1.)) 1.

26/36

DiffSharp

Higher-order differentiation API

Op. Value Type signature AD Num. Sym.
f:R—=>R diff (R—-R)—>R—R X, F A X
diff’ f, £ (]P —+R) >R — (RxR) X, F A X
diff2 o) — R X,F A X
diff2’ f " X, F A X
diff2?? TN —R— (RxRxR) X,F A X
diffn Fm X, F X
diffn’ (f £y 2 = (R x R) X, F X
fiR" R grad X,R A X
grad’ (f, Vf) — (]R x R™) X,R A X
gradv SR 5 R X,F A
gradv’ (f, vf v) —R" — (R xR) X, F A
hessian H; g X,R-F A X
hessian’ (f. Hy)) = R™ — (R x R*m) X,R-F A X
hessianv Hyv) = R" - R" - R X,F-R A
hessianv’ (f Hyv) R — (R x R™) X, F-R A
gradhessian (Vf, Hy) x RXm) X,R-F A X
gradhessian’ (f, V[, Hy) — R™ — (R x R™ x R"Xn) X,R-F A X
gradhessianv (Vf-v,H;v) —R" = (R x R") X, F-R A
gradhessianv’ (f,Vf-v,Hsv) —R" — (R x R x R") X,F-R A
laplacian tr(Hy) SR X,R-F A X
laplacian’ (f, cr(Hf)) R™ — (R x R) X,R-F A X
f:R” —R™ jacobian Je — R® — R™X" X, F/R A X
jacobian’ (£,35) — R™ — (R™ x Rmxn) X,F/R A X
Jjacobianv Jev —R™ 5 R" 5 R™ X,F A
jacobianv’ (F,J¢v) R — R"™ - R" - (R™ x R™) X,F A
jacobianT a7 (R™ — R™) — R — R?Xm X, F/R A X
jacobianT’ (£,97 — R™) = R" - (R™ x R"*™) X, F/R A X
jacobianTv Ity m) R® — R™ — R" X, R
jacobianTv’ (£,]v) 3 ™) R" = R™ — (R™ x R™) X, R
jacobianTv’’ (f,J7(-) (R" = R™) — R" - (R™ x (R™ — R™)) X, R
curl Vxf R X,F A X
curl’ (£,V x f) X,F A X
div -f X, F A X
div’ (£, V-f) X,F A X
curldiv (Vxf£,V-f) X,F A X
curldiv’ £,V xf,V-f) (B SR)~> X, F A X

27/36

DiffSharp

Matrix operations
http://diffsharp.github.io/DiffSharp/api-overview.html

High-performance OpenBLAS backend by default, work on a
CUDA-based GPU backend underway

Support for 64- and 32-bit floats (faster on many systems)

Benchmarking tool
http://diffsharp.github.io/DiffSharp/benchmarks.html

A growing collection of tutorials: gradient-based optimization
algorithms, clustering, Hamiltonian Monte Carlo, neural networks,
inverse kinematics

28/36

http://diffsharp.github.io/DiffSharp/api-overview.html
http://diffsharp.github.io/DiffSharp/benchmarks.html

Hype

Hype
http://hypelib.github.io/Hype/

An experimental library for “compositional machine learning
and hyperparameter optimization”, built on DiffSharp

A robust optimization core
m highly configurable functional modules

m SGD, conjugate gradient, Nesterov, AdaGrad, RMSProp,
Newton’s method

m Use nested AD for gradient-based hyperparameter
optimization (Maclaurin et al., 2015)

Researching the differentiable functional programming paradigm
for machine learning

29/36

http://hypelib.github.io/Hype/

Hype

Extracts from Hype neural network code,

use higher-order functions, don't think about gradients or
backpropagation
https://github.com/hypelib/Hype/blob/master/src/Hype/Neural.fs

open DiffSharp.AD.Float32

type O
inherit Layer()

override n.Run(x:DM) = Array.fold Layer.run x layers

type (inputs , memcells)
inherit Layer()

1:
2:
4:
5:
6:
7:
8:
g

override 1.Run (x)
X DM.mapCols
(fun x ->
let z sigmoid(1l.Wxz
let r sigmoid(1.Wxr
let h' tanh(1.Wxh X
1.h 1.f - 2) h*
1.h)

30/36

https://github.com/hypelib/Hype/blob/master/src/Hype/Neural.fs

Hype

Extracts from Hype optimization code
https://github.com/hypelib/Hype/blob/master/src/Hype/Optimize.fs

Optimization and training as higher-order functions
— can be composed, nested

static member Minimize (f:DV->D, w0:DV)
Optimize.Minimize (f, w0, Params.Default)

static member Train (f:DV->DV->D, w0:DV, d:Dataset)
Optimize.Train ((fun w v -> toDV [f w v]), w0, d)

1:
2:
3:
4:
5:
6:
7:

31/36

https://github.com/hypelib/Hype/blob/master/src/Hype/Optimize.fs

Hype
User doesn't need to think about derivatives
They are instantiated within the optimization code

. type Method
| CG ->
fun w f g p gradclip ->
let v', g' grad' f w
let g’ gradclip g’
let y ! 4
let b
let p'
v', g',
| NewtonCG ->
fun w f _ p gradclip ->
let v', g' grad' f w
let g’ gradclip g’
let hv = hessianv f w p
let b (g’ hv) (p hv)
let p' b *p
v, g, p’
| Newton ->
funw f _ _ gradclip ->
let v', g', h" gradhessian' f w
let g’ gradclip g'
let p* DM.solveSymmetric h* g°
v, g', p'

Hype

But they can use derivatives within their models, if needed
— input sensitivities

— complex objective functions

— adaptive PID controllers

— integrating differential equations

let leapFrog (u:DV->D) (k:DV->D) (d:D) steps (x0, p0)
let hd = d / 2.
[1..steps]
fold (fun (x, p) _ ->
let p' p - hd * grad u x
let x' x +d * grad k p'
x', p' hd * grad u x') (x0, p0)

1:
2:
BH
4:
55
6:
7:

00

33/36

Hype

But they can use derivatives within their models, if needed
— input sensitivities

— complex objective functions

— adaptive PID controllers

— integrating differential equations

let leapFrog (u:DV->D) (k:DV->D) (d:D) steps (x0, p0)
let hd = d / 2.
[1..steps]
fold (fun (x, p) _ ->
let p' p - hd * grad u x
let x' x +d * grad k p'
x', p' hd * grad u x') (x0, p0)

1:
2:
BH
4:
55
6:
7:

00

Thanks to nested generalized AD

m you can optimize components that are internally using
differentiation
m resulting higher-order derivatives propagate via

forward/reverse AD as needed
33/36

Hype

We also provide a Torch-like API for neural networks

let n FeedForward()
n.Add(Linear(dim, 100))
Add(LSTM(100, 400))
Add(LSTM(400, 100))
Add(Linear (100, dim))
Add(relLU)

n
n
n
n

34/36

Hype

We also provide a Torch-like API for neural networks

let n FeedForward()
n.Add(Linear(dim, 100))

Add(LSTM(100, 400))
Add(LSTM(400, 100))
Add(Linear (100, dim))

n
n
n
n.Add(reLU)

A cool thing: thanks to AD, we can freely code
any F# function as a layer, it just works

n.Add(fun m ->m DM.mapCols softmax)

let dropout (x:DM)
X (Rnd.UniformDM(x.Cols, x.Rows) DM.Round) 2.f

n.Add(dropout)

34/36

Hype

http://hypelib.github.io/Hype/feedforwardnets.html

We also have some nice additions for F# interactive

35/36

http://hypelib.github.io/Hype/feedforwardnets.html

Roadmap

m Transformation-based, context-aware AD
F# quotations (Syme, 2006) give us a direct path for deeply
embedding AD

m Currently experimenting with GPU backends
(CUDA, ArrayFire, Magma)

m Generalizing to tensors
(for elegant implementations of, e.g., ConvNets)

36/36

Demos

Thank You!

References

Baydin AG, Pearlmutter BA, Radul AA, Siskind JM (Submitted) Automatic differentiation in machine leaming: a survey [arXiv:1502.05767]

Baydin AG, Pearlmutter BA, Siskind JM i DiffSharp: ic dif iation library [arXiv:1511.07727]

Bengio Y (2013) Deep learning of representations: looking forward. Statistical Language and Speech Processing. LNCS 7978:1-37 [arXiv:1404.7456]

Graves A, Wayne G, Danihelka | (2014) Neural Turing machines. [arXiv:1410.5401]

Grefenstette E, Hermann KM, Suleyman M, Blunsom, P 2015) Learning to transduce with unbounded memory. [arXiv:1506.02516]

Griewank A, Walther A (2008) Evaluating Derivati iples and of Algorithmic Di iation. Society for Industrial and Applied Mathematics,
Philadelphia [DOI 10.1137/1.9780898717761]

He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. [arXiv:1512.03385]

Joulin A, Mikolov T (2015) Inferring algorithmic patterns with stack-augmented recurrent nets. [arXiv:1503.01007]

+ Maclaurin D, David D, Adams RP (2015) Gradient-based F Optimi through Learning [arXiv:1502.03492]

+ Manzyuk O, Pearlmutter BA, Radul AA, Rush DR, Siskind JM (2012) Confusion of tagged per { in forward ic dif iation of higher-order functions
[arXiv:1211.4892]

+ Pearlmutter BA, Siskind JM (2008) R de ADina Lambda the ultimate backpropagator. ACM TOPLAS 30(2):7 [DOI
10.1145/1330017.1330018]

+ Siskind JM, Pearlmutter BA (2008) Nesting forward-mode AD in a Higher Order and Symbolic Computation 21(4):361-76 [DOI

10.1007/510990-008-9037-1]
Sukhbaatar S, Szlam A, Weston J, Fergus R (2015) Weakly supervised memory networks. [arXiv:1503.08895]

Syme D (2006) Leveraging .NET met from F#: queries and i ion. 2006 on ML.

mea\s 0, Toshev A, Bengio S, Erhan D (2014) Show and tell: a neural image caption generator. [arXiv:1411.4555]

Wengert R (1964) A simple derivative ion program. C: ications of the ACM 7:463-4

Zaremba W, Sutskever | (2015) Reinforcement learning neural Turing machines. [arXiv:1505.00521]

