BERKELEY

Efficient Probabilistic Inference In the 3 UNIVERSITY OF
Quest for Physics Beyond the Standard Model -~ OXFORD QA

Scientific Computing Center
Atilim Gines Baydin,! Lukas Heinrich,? Wahid Bhimiji,’ Lei Shao,* Saeid Naderiparizi,” Andreas Munk,” Jialin Liu,’
Bradley Gram-Hansen,' Gilles Louppe,® Lawrence Meadows,* Philip Torr,! Victor Lee,* Prabhat,’ Kyle Cranmer,” Frank Wood’

THE UNIVERSITY <. P LIEGE ((//
_ _ _ | _ _ - _ _ _ _ | | OF BRITISH COLUMBIA université o NYU
'University of Oxford, 2CERN, *Lawrence Berkeley National Lab, “Intel Corporation, *University of British Columbia, “University of Liege, 'New York University '

N i te AI

National Energy Research

» Stochastic simulators are equivalent to probabilistic programs if we could We study 7 (tau) lepton decay in the Standard Model of Particle Physics, which We use inference compilation (IC) [4],
capture all randomness and perform conditioning. We introduce a framework that IS a key ingredient in establishing the properties of the Higgs boson. We use the where an LSTM-based NN is trained o] s
enables this for any existing large-scale simulator code base in any language. state-of-the-art Sherpa simulator coupled to a fast calorimeter implementation, both with traces sampled from simulator prior erir arsibutons p(;) p(xz;)) pw: O S
» We demonstrate it in a state-of-the-art particle physics simulator at a scale of in C++, and connect these to PyProb. p(x,y) to parameterize proposal distribu- — = —— ﬁ
1M lines of C++ code and more than 25k latent variables. N ot it)) | tions ¢(x|y) in importance sampling. The samgta s ||
» Amortized inference using LSTM-based dynamic proposal networks improves NN) ‘ ‘ ‘ ‘ ‘ T 0T ‘ I ‘ H ‘ | Q y]{ NNdIS dynamllcl: (1) at tra;nlng, tergbeddlng : | |
sample efficiency and makes simulator-scale inference feasible. o W ik Sl IHD < | and proposal 1ayers gel crealed as New:—— mremee | aumw o a0
latents are encountered in executions; (2) obsered | /N A /\
at inference, layers are rearranged on- T .
s I __ _ the-fly to match simulator execution. o g B N v
Probabilistic Programming in Existing Simulators Markov Chain Monte Carlo (MCMC) Baseline Sherpa proposal NN has 143M parame- soou ©7 I I
Probabilistic programming allows one to define probabilistic models using general- e ters and a 3D-CNN observation embed- A N——
purpose programming languages [1]. A program defines the joint prior p(x,y) = We obtain MCMC baselinesin Sherpas =22 22 2 =2 = == ding for the particle detector. N et e I essodeon
[Ti—1 fu (@lwri—1) TT,-; 9n(ynlz<n) of latents x and observables y, and inference ap- latent space wusing Random-Wak =~~~
proximates the posterior p(x|y) given observations y. Metropolis Hastings (RMH), and e = i = =
establish convergence usingMCMC di- #2222 Interpretability
agnostics. This is the first time Bayesian = =
inference in a full particle-physicslatent- = == = = = =
AN Sy 4) model (as defined by the Sherpacode == = = Inputs o FEfsEs] e g ated
Particl " Newron — Gravitational Evolution of base) has been performed. Wefourd = . ICICIEICY mulated data
colliders activity lensing the Universe the entire latent SpaCe to contain at least SRl & o i e et LD ¥ (detector response)
0T 10 1002 1090 100 10 100 107 10 10° 10 1% 10 107 10 10 25k addresses.® Autocorrelationscaleis = = Latents p(x,y) = p(y|x)p(x)
Length scale [m] typically around 10° iterations. S Likelihood Prior i
Many domains of science have complex simulators that describe the current best R .
understanding of phenomena [2]. Building on our previous preliminary work [3], our - - ' S Inputs < Posterior p(X|y) - observe(p(y|x), Yobs)
work enables the execution of existing, large-scale simulator codes as prob- ijjjﬁj nu“ 'i< M i “"\, M"”M“W‘ i) "W’;\.’,“ | u‘ R Generative model / simulator (e.g., Sherpa, Geant)
abilistic programs with minimal alteration. We do this by catching all random \ “ ’F “ Lk H ’w N o
number calls as an execution trace and conditioning on observed data. —:?: TN NN
Y obs ﬁ

“The simulator defines an unlimited number of latents due to the universal (Turing-complete) nature of the host language

> Ob
: served data
How Do We Record Execution Traces? and the presence of sampling loops.

(detector response)

We introduce PyProb, a new universal probabilistic program-

ming system designed to work with existing simulators in any Inf Resul We open the black box
o = _ | A PyPrOb hference Results p

language. It supports distributed training and inference in and discover the latent

simulators using PyTorch MPI. RMH baseline and inference compilation (IC) results where a Channel 2 decay event structure of the probabilis-
(— v;m7) Is the mode of the posterior distribution (a selected subset of latents). tic model implicitly defined
| A PyProb + O PyTorch RMH and IC took 115 hours and 30 minutes respectively. IC uses importance by the simulator code base.
L C°”“°l> Python sampling with learned proposals; it (1) provides non-autocorrelated samples from All latent be oinbointed
Probabilistic [ETRTNAN ENo the posterior, and (2) is embarrassingly parallel. atents can be pinpointe
Inference eneine) 1 | to locations in the code
& Call sample lSamol ob Probabilistic programming system
P P X resulli I’:Srlr,lll[: ; resielive 12 — |chX o2 |CTIOy{L 04 g= IC ZiZZ lzllzle;Energyl Zi: N Enzyfc %:Z —IC :: e Cha”r‘li' 20 Mi IC base' Infe rence reSUItS are
4 Sample|| Sample|| Observe rCeaslllJlt 4 PPX - C++, Java, Go, etc. ‘11 **ﬂl Jrr ’LL\ § \ flLL Z hlghly Interpretable as we
V © © 0 o 6 ol o o] % o -
Simulator ;TAQT—é—»?—»é—» « 0 A e A Al L | o Bl gt T e, g_et to see the exact. loca
: 2 , e el me | ofme 4l | o= i o[me |9 —e | c | ool g = | tions and processes in the
S| m u lator Q- O 06 RMH os RMH P*_ Z: RMH o RMH o200 f RMH §25 RMH o 1 RMH 125 RMH 1:,2 . .
, _ rﬂ : RE 5 J g LHL . ﬁi model that are associated I
Simulator execution > I 5 % . L, ==
SRR e R N gl ¢ T with each prediction. : B
' ' s 1 2 2 } w= :: = IF::MH . IRCMH o] lFfMH - i IFSMH Egg — IF::MH :: IFSMH : my om IF::MH e 6 a ;
PyProb connects to simulators using the new Probabilistic Programming eXecution " JJ* 2 f jﬁl‘{ - : JFLL . S I | B I fﬁbﬂtﬂ% e .- =
(PPX) protocol based on Flatbuffers (supporting C++, C#, Go, Java, JavaScript, PHP, | — | = 3 I o] S e
Python, TypeScript, Rust, Lua, and others). We release PPX as a separate project Th =] T =] =] e oy = =] & 1 T =]
and a probabilistic programming analog of ONNX. : HL N R j : iLL i ; : ﬁa s, References Paper & Code
_ ; | - ; - "1 '
PPX replaces SlmUIator,S random number generator SO that we can o °+1 S o 44444444 o ;40" FSP 1 Energy [GeV] o T [1] ﬁﬂéwglr?(%-\%bgiy;;;té(?{%()ks Paige, Hongseok Yang, and Frank Wood. An introduction to probabilistic program- E "IE
: T N : : =" - M | IF;:MH =g - = | &2 o — o | e e | [2] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference. arXiv:1911.01429, 1
> I‘eCOI’d an exeCUtlon traCe {(ajt)t:17 (yn)nzl} Sampled from SImUIator prlo_r p(X’ y> }]Ji . L . kj GL]_L g X2 y H ﬂ[ﬁ& 2 [3] %/I(_)egr?d Lezcano Casado, Atilim GUn_e§ Baydin, David Martinez Rubio, Tuan Anh Le, Frank Wood, Lukas Heinrich,
» or guide simulator execution by sampling from proposals ¢(z;|-) at runtime. : | | S B TS Qoo i | orobabiiste proptamming in large.soale scontific smulatore. In DLPS Worksnop, Neuribs 2017 2017 - o "

TS 1o 1 2 3 R S S 1 2 3 205 a4 ' 45 46 o 23 o0 "% 30 40 0 10 20 30 40 0 10 20 30 P20, 3 32 X
Momentum [GeV/c] Momentum [GeV/c] Momentum [GeV/c] Energy [Ge Energy [GeV] FSP 1 Energy [GeV] Missing ET y [4] Tuan Anh Le, Atihm Gines Baydin, and Frank Wood. Inference compilation and universal probabilistic programming.
In AISTATS, 2017.

