
Efficient Probabilistic Inference in the Quest
for Physics Beyond the Standard Model

Atılım Güneş Baydin, Lukas Heinrich, Wahid Bhimji,
Lei Shao, Saeid Naderiparizi, Andreas Munk,
Jialin Liu, Bradley Gram-Hansen, Gilles Louppe,
Lawrence Meadows, Philip Torr, Victor Lee, Prabhat,
Kyle Cranmer, Frank Wood

Probabilistic programming

Deep learning

3

Neural network

Model is learned from data as a differentiable transformation

Inputs Outputs

Deep learning

4

Neural network (differentiable program)

Model is learned from data as a differentiable transformation

Inputs Outputs

Difficult to interpret the actual
learned model

Deep learning

5

Neural network (differentiable program)

Model / probabilistic program / simulator

Model is learned from data as a differentiable transformation

Model is defined as a structured generative program

Inputs

Inputs

Probabilistic programming

Outputs

Outputs

Probabilistic programming

6

Model / probabilistic program / simulator

Probabilistic model: a joint distribution of random variables
● Latent (hidden, unobserved) variables
● Observed variables (data)

Inputs Outputs

Probabilistic programming

7

Model / probabilistic program / simulator

Probabilistic model: a joint distribution of random variables
● Latent (hidden, unobserved) variables
● Observed variables (data)

Inputs Outputs

Probabilistic graphical models use graphs
to express conditional dependence
● Bayesian networks
● Markov random fields (undirected)

Probabilistic programming

8

Model / probabilistic program / simulator

Probabilistic model: a joint distribution of random variables
● Latent (hidden, unobserved) variables
● Observed variables (data)

Inputs Outputs

Probabilistic programming extends this to
“ordinary programming with two added constructs”
● Sampling from distributions
● Conditioning by specifying observed values

Inference

9

Model / probabilistic program / simulator

Use your model to analyze (explain) some given data
as the posterior distribution of latents conditioned on observations

Inputs Outputs

See Edward tutorials for a good intro: http://edwardlib.org/tutorials/

Posterior:
Distribution of latents
describing given data

Prior, describes latents

Likelihood:
How do data depend on latents?

Inference

10

Inputs Simulated
data

Observed
data

● Run many times

● Record execution traces ,

● Approximate the posterior

Model / probabilistic program / simulator

Inference

11

Inputs Simulated
data

Observed
data

● Run many times

● Record execution traces ,

● Approximate the posterior

Model / probabilistic program / simulator

This is importance sampling, other
inference engines run differently

Inference reverses the generative process

12

Inputs Simulated data
(detector response)

Real world system

Observed data
(detector
response)

Generative model / simulator (e.g., Sherpa, Geant)

Inputs

Live demo

Inference

13

● Markov chain Monte Carlo
○ Probprog-specific:

■ Lightweight
Metropolis–Hastings

■ Random-walk
Metropolis–Hastings

○ Sequential
○ Autocorrelation in samples
○ “Burn in” period

● Importance sampling
○ Propose from prior
○ Use learned proposal

parameterized by observations
○ No autocorrelation or burn in
○ Each sample is independent (parallelizable)

● Others: variational inference, Hamiltonian Monte Carlo, etc.

Inference engines

14

We sample in trace space:
each sample (trace) is one full execution of
the model/simulator!

prior proposal

posterior

● Markov chain Monte Carlo
○ Probprog-specific:

■ Lightweight
Metropolis–Hastings

■ Random-walk
Metropolis–Hastings

○ Sequential
○ Autocorrelation in samples
○ “Burn in” period

● Importance sampling
○ Propose from prior
○ Use learned proposal

parameterized by observations
○ No autocorrelation or burn in
○ Each sample is independent (parallelizable)

● Others: variational inference, Hamiltonian Monte Carlo, etc.

Inference engines

15

prior proposal

posterior

We sample in trace space:
each sample (trace) is one full execution of
the model/simulator!

● Markov chain Monte Carlo
○ Probprog-specific:

■ Lightweight
Metropolis–Hastings

■ Random-walk
Metropolis–Hastings

○ Sequential
○ Autocorrelation in samples
○ “Burn in” period

● Importance sampling
○ Propose from prior
○ Use learned proposal

parameterized by observations
○ No autocorrelation or burn in
○ Each sample is independent (parallelizable)

● Others: variational inference, Hamiltonian Monte Carlo, etc.

Inference engines

16

prior proposal

posterior

We sample in trace space:
each sample (trace) is one full execution of
the model/simulator!

● Markov chain Monte Carlo
○ Probprog-specific:

■ Lightweight
Metropolis–Hastings

■ Random-walk
Metropolis–Hastings

○ Sequential
○ Autocorrelation in samples
○ “Burn in” period

● Importance sampling
○ Propose from prior
○ Use learned proposal

parameterized by observations
○ No autocorrelation or burn in
○ Each sample is independent (parallelizable)

● Others: variational inference, Hamiltonian Monte Carlo, etc.

Inference engines

17

prior proposal

posterior

We sample in trace space:
each sample (trace) is one full execution of
the model/simulator!

● Anglican (Clojure)
● Church (Scheme)
● Edward, TensorFlow Probability (Python, TensorFlow)
● Pyro (Python, PyTorch)
● Figaro (Scala)
● Infer.NET (C#)
● LibBi (C++ template library)
● PyMC3 (Python)
● Stan (C++)
● WebPPL (JavaScript)

For more, see http://probabilistic-programming.org

Probabilistic programming languages (PPLs)

18

http://probabilistic-programming.org

Existing simulators
as probabilistic programs

A stochastic simulator implicitly defines a probability
distribution by sampling (pseudo-)random numbers
→ already satisfying one requirement for probprog

Key idea:
● Interpret all RNG calls as sampling from a prior distribution
● Introduce conditioning functionality to the simulator
● Execute under the control of general-purpose inference engines
● Get posterior distributions over all simulator latents

conditioned on observations

Execute existing simulators as probprog

20

A stochastic simulator implicitly defines a probability
distribution by sampling (pseudo-)random numbers
→ already satisfying one requirement for probprog

Advantages:
Vast body of existing scientific simulators (accurate generative
models) with years of development: MadGraph, Sherpa, Geant4

● Enable model-based (Bayesian) machine learning in these
● Explainable predictions directly reaching into the simulator

(simulator is not used as a black box)
● Results are still from the simulator and meaningful

Execute existing simulators as probprog

21

Several things are needed:

● A PPL with with simulator control incorporated into design

● A language-agnostic interface for connecting PPLs to simulators

● Front ends in languages commonly used for coding simulators

Coupling probprog and simulators

22

Several things are needed:

● A PPL with with simulator control incorporated into design
pyprob

● A language-agnostic interface for connecting PPLs to simulators
PPX - the Probabilistic Programming eXecution protocol

● Front ends in languages commonly used for coding simulators
pyprob_cpp

Coupling probprog and simulators

23

https://github.com/probprog/pyprob

A PyTorch-based PPL

Inference engines:
● Markov chain Monte Carlo

○ Lightweight Metropolis Hastings (LMH)
○ Random-walk Metropolis Hastings (RMH)

● Importance Sampling
○ Regular (proposals from prior)
○ Inference compilation (IC)

● Hamiltonian Monte Carlo (in progress)

pyprob

24

https://github.com/probprog/pyprob

https://github.com/probprog/pyprob

A PyTorch-based PPL

Inference engines:
● Markov chain Monte Carlo

○ Lightweight Metropolis Hastings (LMH)
○ Random-walk Metropolis Hastings (RMH)

● Importance Sampling
○ Regular (proposals from prior)
○ Inference compilation (IC)

Le, Baydin and Wood. Inference Compilation and Universal Probabilistic Programming. AISTATS 2017

pyprob

25

https://github.com/probprog/pyprob

26

https://github.com/probprog/ppx

Probabilistic Programming eXecution protocol
● Cross-platform, via flatbuffers: http://google.github.io/flatbuffers/
● Supported languages: C++, C#, Go, Java, JavaScript, PHP, Python,

TypeScript, Rust, Lua
● Similar to Open Neural Network Exchange (ONNX) for deep learning

Enables inference engines and simulators to be
● implemented in different programming languages
● executed in separate processes, separate machines across networks

27

PPX

https://github.com/probprog/ppx
http://google.github.io/flatbuffers/

28

E.g., SHERPA, GEANT

29

PPX

https://github.com/probprog/pyprob_cpp
A lightweight C++ front end for PPX

pyprob_cpp

30

https://github.com/probprog/pyprob_cpp

Probprog and high-energy physics
“etalumis”
simulate

32

etalumis | simulate
Atılım Güneş
Baydin

Bradley
Gram-Hansen

Lukas
Heinrich

Kyle
Cranmer

Andreas
Munk

Saeid
Naderiparizi

Frank
Wood

Wahid
Bhimji

Jialin
Liu

Prabhat

Gilles
Louppe

Lei
Shao

Larry
Meadows

Victor
Lee

Phil
Torr

Cori supercomputer, Lawrence Berkeley Lab
2,388 Haswell nodes (32 cores per node)
9,688 KNL nodes (68 cores per node)

pyprob_cpp and
Sherpa

33

Main challenges
Working with large-scale HEP simulators requires several innovations
● Wide range of prior probabilities, some events highly unlikely and not

learned by IC neural network
● Solution: “prior inflation”

○ Training: modify prior distributions to be uninformative
HEP: sample according to phase space

○ Inference: use the unmodified (real) prior for weighting proposals
HEP: differential cross-section = phase space * matrix element

34

Main challenges
Working with large-scale HEP simulators requires several innovations
● Potentially very long execution traces due to rejection sampling loops
● Solution: “replace” (or “rejection-sampling”) mode

○ Training: only consider the last (accepted) values within loops
○ Inference: use the same proposal distribution for these samples

35

Experiments

Tau decay in Sherpa, 38 decay channels, coupled with an approximate
calorimeter simulation in C++

Tau lepton decay

37

Probabilistic addresses in Sherpa
Approximately 25,000 addresses encountered

... 38

Common trace types in Sherpa
Approximately 450 trace types encountered
Trace type: unique sequencing of addresses (with different sampled values)

... 39

Inference results with MCMC engine
Prior

Inference results with MCMC engine
Prior

MCMC Posterior
conditioned on
calorimeter

7,700,000 samples
Slow and has to run single node

Convergence to true posterior
We establish that two independent RMH MCMC chains
converge to the same posterior for all addresses in Sherpa
● Chain initialized with random trace from prior
● Chain initialized with known ground-truth trace

Gelman-Rubin convergence diagnostic

Autocorrelation

Trace log-probability

Convergence to true posterior
Important:
● We get posteriors over the

whole Sherpa address
space, 1000s of addresses

● Trace complexity varies
depending on observed event

This is just a selected subset:

Convergence to true posterior
Important:
● We get posteriors over the

whole Sherpa address
space, 1000s of addresses

● Trace complexity varies
depending on observed event

This is just a selected subset:

Inference
results with
IC engine

MCMC true posterior
(7.7M single node)

Inference
results with
IC engine

IC posterior
after importance
weighting320,000 samples

Fast “embarrassingly” parallel multi-node

IC proposal
from trained NN

MCMC true posterior
(7.7M single node)

Interpretability
Latent probabilistic structure of 10 most frequent trace types

47

Latent probabilistic structure of 10 most frequent trace types

48

Interpretability

Latent probabilistic structure of 10 most frequent trace types

49

px

py

pz

Decay
channel

Rejection
sampling

Rejection
sampling

Calorimeter

Interpretability

Latent probabilistic structure of 25 most frequent trace types

50

px

py

pz

Decay
channel

Rejection
sampling

Rejection
sampling

Calorimeter

Interpretability

Latent probabilistic structure of 100 most frequent trace types

51

px

py

pz

Decay
channel

Rejection
sampling

Rejection
sampling

Calorimeter

Interpretability

Latent probabilistic structure of 250 most frequent trace types

52

px

py

pz

Decay
channel

Rejection
sampling

Rejection
sampling

Calorimeter

Interpretability

53

Interpretability

What’s next?

● Autodiff through PPX protocol
● Learning simulator surrogates (approximate forward simulators)
● Rejection sampling loops (weighting schemes)
● Rare event simulation for compilation (“prior inflation”)
● Batching of open-ended traces for NN training
● Distributed training of dynamic networks

○ Recently ran on 32k CPU cores on Cori (largest-scale PyTorch MPI)
● User features: posterior code highlighting, etc.
● Other simulators: astrophysics, epidemiology, computer vision

Current and upcoming work

55

● Autodiff through PPX protocol
● Learning simulator surrogates (approximate forward simulators)
● Rejection sampling loops (weighting schemes)
● Rare event simulation for compilation (“prior inflation”)
● Batching of open-ended traces for NN training
● Distributed training of dynamic networks

○ Recently ran on 32k CPU cores on Cori (largest-scale PyTorch MPI)
● User features: posterior code highlighting, etc.
● Other simulators: astrophysics, epidemiology, computer vision

Current and upcoming work

56

Rejection
sampling loops
in Sherpa (tau decay)

Workshop at Neural Information Processing Systems (NeurIPS) conference
December 14, 2019, Vancouver, Canada
● Machine learning for physical sciences
● Physics for machine learning

57https://ml4physicalsciences.github.io/

Invited talks: Alan Aspuru-Guzik, Yasaman Bahri, Katie Bouman, Bernhard Schölkopf,
Maria Schuld, Lenka Zdeborova

Contributed talks: MilesCranmer, Eric Metodiev, Danilo Jimenez Rezende,
Alvaro Sanchez-Gonzalez, Samuel Schoenholz, Rose Yu

https://ml4physicalsciences.github.io/

Thank you for listening

Extra slides

Calorimeter
For each particle in the final state coming from Sherpa:

1. Determine whether it interacts with the calorimeter at all
(muons and neutrinos don't)

2. Calculate the total mean number and spatial distribution of
energy depositions from the calorimeter shower
(simulating combined effect of secondary particles)

3. Draw a number of actual depositions from the total mean
and then draw that number of energy depositions according
to the spatial distribution

• Minimize
•

• Using stochastic gradient descent with Adam
• Infinite stream of minibatches

sampled from the model

Training objective and data for IC

61

Gelman-Rubin and autocorrelation formulae

62
From Eric B. Ford (Penn State): Bayesian Computing for Astronomical Data Analysis
http://astrostatistics.psu.edu/RLectures/diagnosticsMCMC.pdf

Gelman-Rubin and autocorrelation formulae

63
From Eric B. Ford (Penn State): Bayesian Computing for Astronomical Data Analysis
http://astrostatistics.psu.edu/RLectures/diagnosticsMCMC.pdf

Model writing is decoupled from running inference

● Exact (limited applicability)
○ Belief propagation
○ Junction tree algorithm

● Approximate (very common)
○ Deterministic

■ Variational methods
○ Stochastic (sampling-based)

■ Monte Carlo methods
● Markov chain Monte Carlo (MCMC)
● Sequential Monte Carlo (SMC)

■ Importance sampling (IS)
● Inference compilation (IC)

Inference engines

64

Transform a generative model implemented as a probabilistic program
into a trained neural network artifact for performing inference

Inference compilation

65

● A stacked LSTM core
● Observation embeddings,

sample embeddings, and
proposal layers specified by
the probabilistic program

sample
value

sample
address

sample
instance

trace
length

Inference compilation

66

Proposal distribution parameters

Tau decay in Sherpa, 38 decay channels, coupled with an approximate
calorimeter simulation in C++

Tau lepton decay

67

Observation: 3D calorimeter depositions (Poisson)
○ Particle showers modeled as Gaussian blobs, deposited energy

parameterizes a multivariate Poisson
○ Shower shape variables and sampling fraction based on final

state particle

Monte Carlo truth (latent variables) of interest:
● Decay channel (Categorical)
● px, py, pz momenta of tau particle (Continuous uniform)
● Final state momenta and IDs

