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Atılım Güneş Baydin, University of Oxford, United Kingdom
G. Matthew Fricke, University of New Mexico, NM, USA

Michael Phillips, Johns Hopkins University, Baltimore, MD, USA
Kimberley Warren-Rhodes, SETI Institute, Mountain View, CA, USA

Nathalie A. Cabrol, SETI Institute, Mountain View, CA, USA
Massimo Mascaro, Google Applied AI, Mountain View, CA, USA

Scott Sandford, NASA Ames Research Center, Mountain View, CA, USA

ASTROBIOLOGY

October 29, 2022



ACKNOWLEDGMENT

This work has been enabled by the Frontier Development Lab (FDL.ai). FDL USA is a col-
laboration between several government agencies, Department of Energy (DOE), National
Aeronautics and Space Administration (NASA), and U.S. Geological Survey (USGS), SETI
Institute, and Trillium Technologies Inc., in partnership with private industry and academia.
This public/private partnership ensures that the latest tools and techniques in Artificial Intel-
ligence (AI) and Machine Learning (ML) are applied to basic research priorities in support
of science and exploration of material concerns to human kind.

NASA Cooperative Agreement boilerplate, from Terms and Conditions GCAM D3:

(1) All information disseminated as a result of the award shall contain a statement which acknowl-
edges NASA’s support and identifies the award by number (e.g., “the material is based upon
work supported by NASA under award No(s) NNX14AT27A.”).

(2) Except for articles or papers published in scientific, technical, or professional journals,
the exposition of results from NASA supported research should also include the following
disclaimer: “Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the National
Aeronautics and Space Administration.”

2



CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Motivation: The Search for Life Beyond Earth . . . . . . . . . . . . . . . . . . . . . . . . . 5
Key Hypothesis: Only Life Creates Complexity in Abundance . . . . . . . . . . . . . . . . 6
Background: Notions of Molecular Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 6
Task: Science Questions and Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Analysis: The Case for Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Speeding up the computation of MA . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Inferring molecular complexity from mass spectrometry data . . . . . . . . . . . . . . 10
Hallucinating molecules of a given target complexity . . . . . . . . . . . . . . . . . . 11

Goals: Desired Outcomes for the Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Dataset development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Machine Learning Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Experimental Pipeline Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Scaling up MA computation with surrogate models . . . . . . . . . . . . . . . . . . . 20
Inferring molecular complexity from mass spectral data . . . . . . . . . . . . . . . . . 23

Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3



ABSTRACT

The search for life beyond Earth is complicated by the lack of a consensus as to what “life” ac-
tually is—especially if we also want to consider potential forms of life that do not not resemble
anything that we have encountered thus far on Earth. Various so-called agnostic biosignatures
have been proposed already, but one that has received particular attention lately is the con-
cept of molecular complexity. The key hypothesis is that life creates not only more complex
molecules, but also greater abundances of complex molecules, than purely abiotic processes.
Known challenges with this approach are, for example, that the calculation of molecular complexity
metrics can be computationally expensive (depending on the chosen definition of complexity),
and that ultimately, we need to be able to actually measure molecular complexity in situ, for
example on board of a spacecraft probing the surface of another planet.

In this FDL 2022 challenge on Astrobiology, we seek to tackle these challenges through the use of
machine learning. As a first step, we generate a large dataset of molecules with corresponding
complexity scores, which we plan to make publicly available to the community. Using this dataset,
we then illustrate on two tasks the potential benefits of machine learning: First, we show that
we can learn models that predict the complexity of a molecule from a suitable representation
(e.g., a SMILES string) with low relative errors (less than 5% on average) and at a significantly
greater speed than existing baselines. Second, we demonstrate that machine learning models
can infer the complexity of a molecule directly from its mass spectrum, with a significantly lower
error than the existing proof-of-concept from the literature. This is a first step towards measuring
molecular complexity in the field, and may help open new doors for critical robotic missions where
autonomous decision-making is required. After all, even if we do not find life beyond Earth, being
able to determine the molecular complexity of samples in situ can help inform decisions such as
which areas to prioritize for exploration, or which data to send back to Earth for detailed analysis.
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INTRODUCTION

In this section, we present the idea and motivation of our FDL challenge, introduce the concept
of molecular complexity, and discuss the goals and desired outcomes of our project.

Motivation: The Search for Life Beyond Earth

One of the three “big questions” that NASA pursues in its research is: “Are we alone, or does
life, be it similar to our own or not, exist elsewhere?” (NASA, 2020). It is a profound questions
that remains one of the most challenging frontiers in modern science, and one that is compli-
cated by the challenge of defining the qualities we may be searching for as signs of “life”? There
are well over a hundred different definitions of the term in scientific literature (Trifonov, 2011),
and new ones keep being proposed; see Bartlett and Wong (2020) for a recent example. Our
definitions, however, are presently constrained to our experience of life in its myriad forms on
Earth, and its specific range of environmental conditions. There is every expectation that “extrater-
restrial life might differ substantially from life on Earth” (Des Marais and Walter, 1999), so how
can we be sure that whatever we decide to use as a potential biosignature1 is also capable of
recognizing “life as we do not (yet) know it”? The study of agnostic biosignatures concerns itself
with the study of “frameworks and techniques for universal life detection that do not presuppose
any particular molecular framework (Cronin and Walker, 2016) or evolutionary endpoint (Cabrol,
2016)” (National Academies of Sciences, Engineering, and Medicine, 2019).

One possible agnostic biosignature that has received considerable attention lately is the concept of
molecular complexity; an idea that we will introduce more thoroughly in the next sections. However,
as motivating examples, we note already that not only has it been hypothesized that increasingly
more complex molecules are likely a prerequisite to the emergence of life (see Walker et al., 2017,
and references therein), but the 2022 Decadal Strategy for Planetary Science and Astrobiology
explicitly addressed the idea of molecular complexity as a potential biosignature, noting that the
molecular assembly index of Marshall et al. (2017) “can [...] be useful in distinguishing biotic from
abiotic molecules” (National Academies of Sciences, Engineering, and Medicine, 2022).2

Our brief in the 2022 Astrobiology Concept Note, which was titled Signatures of Life: Learning
Features of Prebiotic and Biotic Molecules, proposed the following challenge:

”Finding life in the Solar System is an important frontier in modern science and a core
aspect of many NASA missions. The problem is difficult because we lack information
about what “life as we don’t know it” can look like, as we have not yet observed any
living systems beyond the Earth. One promising approach to defining universal life
signatures is to use universal principles in assigning complexity measures to molecules.
We will work on building datasets and machine learning approaches based on

1 A biosignature is commonly defined as an “object, substance, and/or pattern whose origin specifically requires a
biological agent” (Des Marais et al., 2008).

2 The precise question considered in the Decal Strategy is: “What is the extent of molecular complexity (e.g., size,
heteroatom diversity, structure, pathway assembly index) and degree of organization (e.g., isomeric preference,
polymerization) that can be generated abiotically under habitable conditions? How does this compare to prebiotic
experiments to date?” (Q11.1b)
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molecular complexity in prebiotic chemistry, to inform future space missions
such as NASA’s Dragonfly mission to Titan.”

Key Hypothesis: Only Life Creates Complexity in Abundance

To understand why molecular complexity has been considered as a potential agnostic biosig-
nature, one needs to understand the following postulate, which we call the key hypothesis. In
simple terms, the key hypothesis states that, for a suitable definition of what “molecular com-
plexity” means (see below), we expect that it is statistically unlikely that the presence of larger
quantities of a particular complex molecule in a given environmental sample is due to random, abi-
otic processes. Consequently, if we find larger quantities, or proportions, of molecules within
a given sample that are highly complex, it follows that there is likely some form of biologi-
cally driven activity at work within the local environment.

Background: Notions of Molecular Complexity

The concept of molecular complexity (MC) is itself complex (Randić et al., 2005), and many different
metrics have been proposed in the literature; see, for example, the introduction of Böttcher (2016)
for an overview. Most fundamentally, complexity is a mapping that assigns a scalar number to
a molecule (often using some graph- or information-theoretic invariants), which then allows to
order molecules from less to more complex in a somewhat “intuitive” way. As Randić et al. (2005)
describe it: “Most authors appear to agree that the complexity of mathematical objects such as
chemical structures increases with information content, molecular size, connectivity of the graph,
molecular branching, cyclicity of molecules, multiplicity of bonds, and the presence of heteroatoms
(coloring of graphs), while it should decrease with increasing symmetry properties of objects under
consideration.” An even more extensive list of desiderata is found in Bonchev and Polansky (1987).

The original proposal for this challenge was focused on using the molecular assembly index of
Marshall et al. (2017) as a metric of molecular complexity. During the course of the project, we
have decided to extend this to the following list of three complexity measures, which we believe
to represent conceptually different and complementary approaches:

1. Bertz Complexity CT : The “first general index of molecular complexity” (Bertz, 1981). It
combines concepts from graph and information theory and is defined as CT = C(𝜂) + C(E),
where C(𝜂) describes the bond structure and C(E) the complexity due to heteroatoms.
Calculating CT is fast and scales linearly with the molecule size. When we generate our
datasets, we compute CT using the BertzCT method from RDKit (The RDKit Team (G.
Landrum et al.), no date).

2. Böttcher Complexity Cm: An information-theoretic metric that is based on the information
content in the micro-environments of all atoms (Böttcher, 2016; 2017). It is additive and
simple to calculate even for large molecules. Our computation of Cm uses a freely available
open source implementation (Boskovic Group, 2020).

3. Molecular Assembly index (MA): Also known as pathway complexity, the MA represents
the minimum number of steps required to assemble a molecule from fundamental building
blocks (Marshall et al., 2017). MA is claimed to be particularly well-suited to biosignature
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detection for it can be determined experimentally (Marshall et al., 2021). It is at least as
hard as NP-complete to compute (Liu et al., 2021), requiring hundreds of CPU hours even
for moderately sized molecules. We have use a (currently non-public) implementation kindly
provided by the authors of Marshall et al. (2021) for our calculations.

In the explication of their Molecular Assembly Index (MA), Marshall et al. (2021) reasoned
that “high MA molecules cannot form in detectable abundance through random and uncon-
strained processes, implying that the existence of high MA molecules depends on additional
constraints imposed on the process.” But, if true, one might conjecture that similar argu-
ments could also be made for other measures of complexity.

We note that very recently (that is, after the end of the eight-week FDL sprint), the Molecular Assem-
bly Index (and Assembly Theory as a whole) has attracted strong criticism from Uthamacumaran
et al. (2022), who suggest that MA is just a special case of Huffmann’s encoding, and question
the claims that MA is more suitable as a biosignature than other metrics.

The Bertz and Böttcher scores can be considered as “top down” metrics, because they consider
the entire molecule by summing up the information content from all subgraphs (Böttcher, 2016). In
contrast, MA can be considered a “bottom up” complexity metric, because it considers the pathway
through which a molecule is constructed from a shared pool of building blocks, starting from the
fundamental molecular bonds that connect atoms (Marshall et al., 2017; Liu et al., 2021).

All three metrics are intrinsic to a given molecule (i.e., they do not depend on the external en-
vironment), and they characterize different aspects of the molecular chemical space and infor-
mation content; hence we consider them, to an extent, to be complementary. Of course, in
practice, one may be interested not only in the complexity of individual molecules, but also in
ensembles of molecules or entire reaction networks. Liu et al. (2021) have studied how the
definition of the molecular assembly index can be extended to groups of molecules, taking
into account potential synergies in the synthesis pathways.

Task: Science Questions and Approach

In the following, we cite the essential parts of “science questions and approach” section of the
challenge summary as it was given to us at the start of the project. The rationale here is that,
to properly assess the outcomes of our work, we believe one first needs to understand the
inputs that defined the starting point and the scope of the project.

We will work on machine learning (ML) and simulation-based inference (Cranmer et al., 2020)
approaches making use of MA index datasets and MA computation software made publicly
available3 by Marshall et al. (2021), in order to develop ML techniques relevant for the detection
of universal signatures of life. Crucially, as a first step we will be working on creating a unified
dataset of prebiotic molecules and their MA indices that we expect to inform future missions
including NASA’s Dragonfly mission to Titan, the largest moon of Saturn.

The objectives of this project are as follows:

1. Identify data sources and pre-process data that can be used for ML, including the supplemen-
tary material made available by Marshall et al. (2021), other existing scientific databases, and

3 Supplementary information: https://www.nature.com/articles/s41467-021-23258-x#Sec15
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simulations for synthetic data generation. Compile these into a well-documented ML-ready
unified dataset that can be shared with the research community. The dataset should include
the following as a minimum:

a) Molecules that have been found in meteorites (Oba et al., 2020).

b) The majority of (and if possible, all) molecules discovered in prebiotic chemistry.

2. Formulate ML approaches to tackle the problem of characterizing and detecting biotic versus
abiotic molecules, building on the MA theory and the state-of-the-art in relevant fields of
science such as computational chemistry. The ML approaches should follow the best
practices (Artrith et al., 2021) and might include the following:

a) Classification of molecules (or groups of molecules) as biotic or abiotic based on the MA
index and other features that can be learned via state-of-the-art ML techniques such as
graph convolutional neural networks (Kipf and Welling, 2016).

b) Surrogate modeling approaches (e.g. Shirobokov et al., 2020; Poduval et al., 2021;
Himes et al., 2022) that can make the MA index computation significantly faster and
parallelizable, in order to enable ML-onboard deployment (e.g., Mateo-Garcia et al.,
2021) on a robotic deep space mission with autonomous life detection capability.

c) Simulation-based inference and probabilistic programming (Baydin et al., 2019) using
the MA index computation model by Marshall et al. (2021) in a model-based probabilistic
ML setting.

3. Produce proof-of-concept code and run reproducible experiments demonstrating whether ML
approaches relevant for the detection of universal signatures of life can be feasible.

We expect the project to produce several important outcomes. Firstly, approaching the problem
of life signature detection with state-of-the-art ML techniques, which have been successfully
deployed for complex pattern recognition tasks in many domains (Goodfellow et al., 2016), and
releasing the datasets we will construct in the process will be important contributions that we
expect to pioneer similar follow up work in ML.

Beyond this, we expect our datasets and results to inform autonomous life detection capability on
NASA missions to destinations with significant time delay in communications, such as NASA’s
Dragonfly mission to Titan.

A vision we have is that an ML-based end-to-end pipeline can be constructed that takes
in raw data from a mass spectrometry sensor onboard a mission, and produces molecular
complexity distributions (MA index histograms) on-the-fly to select interesting targets and
samples autonomously. Existing work involving members of our research team (e.g. Shirobokov
et al., 2020; Poduval et al., 2021; Mateo-Garcia et al., 2021; Himes et al., 2022) demonstrates
that fast ML-based pipelines of complex computational models can be constructed and deployed
onboard space hardware with constrained computation and energy budgets.

Analysis: The Case for Machine Learning

Starting from the descriptions on the challenge summary, we began our challenge by research-
ing and exploring the idea of molecular complexity as an agnostic biosignature, and analyzed
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possible directions for our work. Ultimately, we identified three potential applications for which
we believe machine learning may be useful. These are:

1. Speeding up the computation of the molecular complexity index by learning surrogate models
that can predict or estimate the MA from a given molecular representation, such as a graph
or a string. This may directly help us to make (approximate) MA values accessible for a larger
space of molecules than what is currently possible.

2. Inferring the molecular complexity of a molecule directly from instrument data, more specifi-
cally, mass spectrometry data. This is highly relevant for the practicality of molecular complex-
ity as a potential biosignature, because it could enable future spacecrafts to perform fast MC
measurements in situ.

3. “Hallucinating” molecules for a given molecular complexity, that is, learning a conditional
generative model that can, for a given target complexity, produce and suggest new molecules
with that complexity. This might become a useful explorative tool to better understand the
space of complex molecules.

We will discuss each of these three applications in more detail in the following subsections.

Speeding up the computation of MA

The molecular assembly index, also known as pathway complexity, is a conceptually simple yet
very appealing notion of molecular complexity: It is basically defined as the number of steps
required to construct a molecule from fundamental building blocks. The biggest challenge with
MA is, however, that its computational complexity is at least NP complete (Liu et al., 2021)—in
other words, it becomes very expensive very quickly to compute the MA of larger molecules.
Different solutions have been proposed to deal with this challenge, such as a Monte Carlo ap-
proach (Liu et al., 2021), or the idea of recursive pathway complexity (Marshall et al., 2017)
which provides an upper bound on the exact assembly index.

We suggest that learning-based methods may provide yet another fruitful approach to tackle
the computational challenges of calculating MA. Of course, such a system will, in general, not
produce an exact solution (after all, machine learning is no magic bullet that can circumvent
computational complexity), but it could provide an approximate solution very fast. Depending
on the specific context, such an approximate solution could then either be “good enough” al-
ready, or it could help to inform an exact algorithm and help narrow down the search space.
The usefulness of learning-based, data-driven approximations to NP-hard problems has already
been demonstrated in the literature (see, e.g., Milan et al., 2017).

We have identified, in principle, two different ways in which we could employ machine
learning to help scale up the computation of MA values:

1. Guided Tree Search. The standard algorithm to computing MA is essentially a branch-and-
bound tree search: Inside the (combinatorially large) assembly tree, we have to find the
shortest path from the given building blocks to our target molecule. How exactly we explore
this search tree, however, is up to us. One potential approach we see is to employ machine
learning to find good heuristics that guide the exploration of the search space, similar to
the ideas presented in, for example, Li et al. (2018) or Parascandolo et al. (2020). Using
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deep neural networks to guide Monte Carlo tree search is also one key elements of the
recent successes of AlphaZero (Silver et al., 2018) and AlphaTensor (Fawzi et al., 2022).
Monte Carlo Tree in combination with reinforcement learning has also been proposed in the
cheminformatics literature to find new synthesis pathways (Wang et al., 2020); a task that
seems conceptually related to MA computation.

The advantage of this approach is in fact two-fold: On the one hand, optimizing the way in
which we traverse the search tree increases the chances that we find a “good” solution given
only a limited computational budget. On the other hand, given sufficient computational budget,
the obtained solutions are still exact—after all, we are still running the same tree search as
before, just in a heuristically controlled order.

Unfortunately, in practice, such a guided tree search using learned heuristics would require
extensive modifications at the lowest level to the implementation of the MA calculation, which
we deemed not feasible given the very short time frame of the FDL research sprint. While still
promising from our perspective, we have therefore decided to forego the idea at this time.

2. Regression. Conceptually and implementation-wise much easier, the idea here is to use a
supervised learning approach and learn a regression model to predict the MA of a molecule
directly from a representation of that molecule (e.g., a string). For this approach, we do not
have to make any modifications to code that computes MA—all we need is a sufficiently large
dataset of molecules with corresponding complexity values which we use to train our model.

The key challenge with all this is, of course, essentially a matter of out-of-distribution
generalization. How can we make sure that the model that we train on molecules with an MA
of, say, 0 to 20 also works well for molecules with a (true) MA of 50? This is in fact a rather
fundamental issue, because for sufficiently complex molecules, the classic computation is
intractable, meaning that we do not even have ground truth data to evaluate the extrapolation
or generalization performance of our model.

Despite this obvious and crucial challenge, we have decided that the regression approach
is more practical and more likely to produce some first results before the end of the program.

We will discuss our practical implementation and preliminary results for this task in the next section.

Inferring molecular complexity from mass spectrometry data

Molecular complexity per se is a rather theoretical concept, in the sense that any given notion of it
usually comes with a formula or an algorithm that describe how to compute it for a given represen-
tation of a molecule (e.g., a graph). However, for MC to be useful as a potential biosignature also
in practice, for example during a future space mission, we need to be able to determine it in situ
for a given sample.4 One prime candidate to enable this is mass spectrometry (MS): Virtually all
upcoming planetary exploration missions, such as the Dragonfly mission to Titan (Lorenz et al.,
2018; Grubisic et al., 2021), or the proposed Europa Lander (Hand et al., 2022) and Enceladus Or-
bilander (MacKenzie et al., 2021), will carry mass spectrometers to analyze their targets. Equipping

4 Note how in practice, this is further complicated by the fact that we cannot simply sample a single molecule from
an environment. Instead, we are always dealing with mixtures of compounds (which may or may not form an
entire reaction network), and in the long run, we might even be more interested in characterizing the complexity of
environments than of single molecules.
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Figure 1: A schematic workflow that illustrates where our work on inferring MC from MS data fits
into the “bigger picture” of space exploration and the search for traces of extraterrestrial life.

these missions with the ability to infer MC from MS data may be useful for a variety of tasks even
beyond the search for traces of extraterrestrial life. For instance, information about the molecular
complexity of a sample may inform decisions such as which areas to prioritize for exploration, or
which data to send back to Earth for more detailed analysis. We illustrate in figure 1 a schematic
workflow and highlight where the inference of MC from MS data fits into the “bigger picture.”

A naïve approach to infer MC from a sample could then look like this: In a first step, we solve
the inverse problem of mass spectrometry, that is, given a mass spectrum, we infer from it the
molecule to which it corresponds. In a second step, we can then run any algorithm of choice
to compute the MC. In practice, of course, this naive approach is not very practical: First, in-
verting a mass spectrum is a challenging problem in its own right—see, for example, Wei et al.
(2019) or Zhang et al. (2022) for recent machine learning-based approaches to this problem.
Second, depending on the choice of MC metric, computing the complexity of the identified com-
pound may easily exceed the computational capabilities of a spacecraft. Sending all data back
to Earth for analysis may also not be an option, for deep space communications are generally
expensive, low-bandwidth, and have large round-trip delays. It is not least for these reasons that
the community has identified a clear need for spacecraft autonomy and is recognizing machine
learning as one potential tool to achieve this goal (Theiling et al., 2022).

Looking at the shortcomings of the naive approach and keeping in mind the aforementioned
need for spacecraft autonomy, the question arises if there is a perhaps a more direct way to
infer molecular complexity from mass spectrometry data. The answer, at least in the case of
MA, is yes: Marshall et al. (2021) have already demonstrated that it is possible to infer MC di-
rectly from MS data by showing that there is a clear correlation between the number of peaks
in a high-resolution tandem MS of a molecule and its MA.

We believe that one worthwhile application for machine learning would be to take these studies
further and investigate if we can improve on the first proof of principle by using more advanced
regression models. Going beyond the molecular assembly index, we can also have a first look
at other complexity metrics and to what extent they can be inferred directly from mass spectra,
which is something that, to the best of our knowledge, has not been done before.

Hallucinating molecules of a given target complexity

The idea to use conditional generative models to “dream up” new molecules with given target
properties is not a new one—the feasibility of this (in the context of de novo design of drug-like
molecules) has already been demonstrated, for example, by Lim et al. (2018). We believe that, in
principle, it should be rather straightforward to extend their method also to molecular complexity.
However, due to the time constraints of the FDL research sprint, we did not explore this idea further.
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Goals: Desired Outcomes for the Challenge

Following our analysis above, as well as discussions with our stakeholders at NASA, we set
ourselves the following three goals for our project. These goals are aimed at measuring our own
performance while ensuring outputs that are useful for the astrobiology community.

1. The Minimum Goal, defined as what we are confident we can achieve even in the worst case
and thus consider the minimal outcome for the project to be considered a success, is to collect
and generate a dataset of molecules and corresponding meta-information, including molecular
complexity values. This dataset should be well-documented and publicly accessible, in order
to be useful for the broader scientific community. Once published, we would encourage the
community to find creative ways to examine the dataset and test interesting ideas.

2. The Target Goal, given by what we would like to achieve if things (mostly) go to plan, is to
use the dataset we created and use it for the various machine learning experiments described
in the previous section.

3. The Bold & Crazy Goal, or moonshot goal, is something that is well beyond what we believe
we can achieve during the research sprint, but serves as “Northern star” of sorts to guide our
efforts and help us with the decisions that we will have to make along the way. Our bold and
crazy goal was to construct a (prototype of) a machine learning-based systems that could be
deployed on a future spacecraft to enable in situ measurements of molecular complexity. This
would involve taking into account the realistic hardware limitations, as well as considering how
to streamline our ML computation algorithms to fit within limited CPU and memory space.

One additional goal, which would be located somewhere between the target and the moonshot
goal in terms of ambition, and whose category would perhaps best be described as “if time
permits”, would be use our dataset to explore the relationship between molecular complexity
and ensembles of molecules that form networks of chemical reactions.

Finally, we highlight one more thing that we explicitly chose not to make a goal for our chal-
lenge, namely, the (machine learning-based) classification of molecules into biotic and abiotic
(and possibily prebiotic). The reason, quite simply, is that there is no universally agreed-upon
definition of these terms, and no existing labeled data (at scale).
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PROCEDURE

This section outlines the approach that we took to generate our dataset, describes the machine
learning experiments that we conducted using this data, and discusses our findings and results.

Dataset development

Dataset generation Our minimal goal (see previous section) was to create a dataset of molecules
with associated complexity scores that aims to be useful to the wider astrobiology community.
The approach that we chose for this was a two-step process where we first curate, from different
sources, a minimal list of relevant molecules, and then subsequently augment this list with additional
information such as complexity scores, number of atoms and bonds, or mass spectral data.

The first step, also known as the initial curation process, was partially automatic (by downloading lists
of molecules from existing databases), and partially manual (i.e., we collected molecules found in rel-
evant publications, such as in the study of organic molecules found meteorites and lab experiments).
For each molecule, we started by collecting a minimal set of identifiers and metadata, consisting of:

1. inchi, a string with the International Chemical Identifier (InChI) of the molecule (Heller et al.,
2013; Heller et al., 2015),

2. smiles, a string with the (non-unique) Simplified molecular-input line-entry system (SMILES)
representation of the given molecule (Weininger, 1988),

3. inchikey, a fixed-length identifier computed from the SHA-256 hashed of the InChI string,

4. origin, the source environment of the molecule (if known),

5. reference, the DOI of the publication from which we took the molecule (if applicable), and

6. comment, an extra field which can store any additional metadata.

Only one of the first three columns is required. If multiple entries are present, we select the first non-
empty column (using the given order) and use it to identify the molecule and populate the other fields.

In a second step, we then augment this minimal list and add additional columns. A full overview
is given in table 2. This step combines different data sources: Some information, such as the
number of atoms and bonds, can be directly obtained, for example, from the InChI string, which
we do using the RDKit library. Other information need to be queried from online databases, such
as the CAS number (CAS, 1978), or any look-ups of the InChI key. For this, we make use of the
CIRpy library , which provides a simple Python interface for the Chemical Identifier Resolver
(CIR) by the CADD Group at the NCI/NIH. For the computation of the different complexity scores,
we use a wrapper package that we developed ourselves, complexipy, which we explain in more
detail below. We set a time limit of 240 hours (ten days) for the computation of the MA, and many
molecules failed because they exceeded this limit. Finally, to obtain mass spectral data, we use
the CAS number of a molecule to query the NIST Chemistry WebBook (NIST, 2022) through its
public API. (This step actually succeeded only for a small fraction of all molecules.)

Due to the large number of molecules that we wanted to process, the data augmentation was run
on Google Cloud, using hundreds of compute-optimized nodes (i.e., C2-type instances) in parallel.
Each node ran a custom-made Docker container and was assigned a random subset of the original
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minimal list from step 1. The results from each node where uploaded into a Google Cloud Bucket,
where they were combined into a single file. All inputs and outputs used the CSV file format.

The final dataset curated during the FDL sprint consists of 407 240 molecules. For a subset of
17 021 of these molecules, we were also able to obtain mass spectrometry data from NIST. We are
showing an overview of the distribution the complexity scores in our dataset in figure 2. The major
limitation of the dataset generation was the computation of MA, which took well-over 100 000 CPU
hours just for the molecules where it ultimately suceeded. Even more CPU hours were spent on
molecules which ultimately exceeded the 10-day threshold for the MA computation. By comparison,
computing all Böttcher and Bertz scores together took only around 200 minutes of CPU time.

All code that we have used to generate our dataset(s) is available on GitLab.5

Complexity computations and complexipy: Not least due to the strict time constraints of the
program, we relied on existing implementations for the computation of our three complexity metrics:

1. To compute the Bertz score, we use the BertzCT function from RDKit , a powerful open
source cheminformatics package that we also use for other computations and conversions.

2. For the Böttcher score, we use the implementation by the Boskovic Group at the University
of Kansas, which is available from GitHub under a BSD 3-Clause License. To ensure
that the code also works for molecules that contain “non-bonds,” which are indicated by
a “.” in the SMILES string.6 We have also considered other implementations, including a
publicly available implementation by the Forli Lab at Scripps Research. When comparing
the different versions, we found that there were sometimes significant differences between
the scores returned by the different implementations. Our ultimate decision to use the
implementation of the Boskovic Group was mainly based on the fact that it only requires RDKit,
but not OpenBabel—another cheminformatics library, which we found non-trivial to install.

3. Public implementations of the MA computation (in C++) are available from the supplementary
materials of Marshall et al. (2021) and Liu et al. (2021). However, for our work here, we have
made use of a newer, Go-based implementation of the MA computation, which the Cronin
Group has kindly agreed to share with us in private, and which is not yet publicly available.

To simplify the usage of the three different code bases during our data generation process, we have
written complexipy, a simple Python package which constitutes a very thin wrapper around the
existing implementations described above, and whose main purpose is to provide a single unified
interface for computing molecule complexity scores. Since complexipy heavily depends on other
people’s intellectual property, we have decided not to make it publicly available for the moment.

Extra features: Besides the default set of features summarized in table 2, there is a smaller set
of features that we have used for some of our machine learning experiments that are not generated
by the main data generation pipeline described above, but are only available through extra scripts.
The reason for this is very pragmatic: When we realized that these additional features might be
useful for our ML work, the main data generation was already in full swing, and we did not want
to abort and restart that process. Additionally, computing these extra features is comparably fast
and does not need to be parallelized, but can be run on a suitable machine in a few minutes.

5 https://gitlab.com/frontierdevelopmentlab/2022-us-astroinfosignatures/dataset-generation
6 A simple example of such a non-bond is aqueous sodium chloride, which may be written as [Na+].[Cl-].
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Table 1: Overview of the chemical databases that we utilized for this FDL challenge.

Database Description and reference

NIST Chemistry WebBook Chemical and physical property data for chemical species.
PubChem Publicly available database of chemical information. See [1].
Reaxys Expert-curated database owned and operated by Elsevier.
GBD-17 Enumerated 166 billion small organic molecules. See [2].
Rad-6 Enumerated organic molecules and reactions. See [3].
GNPS Natural product mass spectrometry database. See [4].
Manual Manually collected molecules from various papers.

MassBank US (MoNA) 2M+ million mass spectra of experimental and in silico origin.
Lipid MAPS Structure DB 47k+ unique structures for biologically relevant lipids.
METLIN Gen2 860k+ molecular standards for tandem mass spectrometry.

References: [1] Kim et al. (2021) [2] Ruddigkeit et al. (2012) [3] Stocker et al. (2020) [4] Wang et al. (2016)

Table 2: Overview of the default features (columns) in our generated dataset.

Name Description

inchi International Chemical Identifier.
smiles Simplified Molecular-input Line-Entry System.
inchikey SHA-256-hashed version of the full InChI string.
formula Traditional chemical formula.
cas_number Chemistry Abstracts Service (CAS) registry number.
iupac_name Official IUPAC name.
names Other common and scientific names.

num_atoms Number of atoms in the molecule (excluding hydrogen).
num_atoms_all Number of atoms in the molecule (including hydrogen).
mol_weight Molecular weight (in mol).

complexity_bhi* Bertz complexity score (Bertz, 1981).
complexity_boettcher Böttcher complexity score (Böttcher, 2016).
complexity_ma Molecular Assembly index (Marshall et al., 2017).

complexity_bhi_runtime Time (in seconds) to calculate complexity_bhi.
complexity_boettcher_runtime Time (in seconds) to calculate complexity_boettcher.
complexity_ma_runtime Time (in seconds) to calculate complexity_ma.

mass_spectrum_nist Mass spectrum from NIST in JCAMP-DX format (if available).

origin Primary environment of the species.
reference DOI of publication (if applicable).
comment Any additional meta-information.

* The abbreviation “BHI” (short for Bertz-Hendrickson-Ihlenfeldt) is a historic artifact: We originally intended to com-
pute this index (which is the default complexity score available from PubChem); however, we did not find a publicly
available implementation and therefore ultimately reverted to the regular Bertz complexity.
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Figure 2: (Joint) distributions of the three complexity scores in our dataset. All histograms (1D and
2D) use a logarithmic scale. The line shows in the 2D histogram shows the best linear fit, for which
we also report the coefficient of determination R2, as well as the Pearson correlation coefficient 𝜌.

Table 3: Overview of the additional features used for some of our experiments. These features are
not produced by default by our data generation pipeline, but are available through extra scripts.

Name Description and link to used implementation

mol2vec Embedding computed using mol2vec (Jaeger et al., 2018).
mte Molecular transformer embedding (Morris et al., 2020).
rdkit_fingerprint 2048-bit molecular fingerprint computed by RDKit.
selfies SELFIES representation of the molecule (Krenn et al., 2020).
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These extra features, which we also summarize in table 3, are the following:

mol2vec A 300-dimensional vector embedding that is obtained by passing a molecule to a
pre-trained instance of the mol2vec model of Jaeger et al. (2018), which is based on the
seminal word2vec model introduced in Mikolov et al. (2013). We chose this model because
it was one of the first that used machine learning to generate embeddings of molecules.

mte A 512-dimensional vector embedding that is obtained by passing a molecule to a pre-
trained instance of the transformer model of Morris et al. (2020). By default, the model
returns a 512 × n matrix for a model whose SMILES string representation has lengths
n. To obtain a one-dimensional, fixed-sized representation, we take the mean along the
second dimension. Our motivation to use this particular model was rather pragmatic: It
was the first pre-trained transformer model for molecules that managed to run on our data.
Other models that we considered, including for example NVIDIA’s MegaMolBART, turned
out to be more complicated to use, and we decided not to invest too much time here.

rdkit_fingerprint A molecular fingerprint in the form of a 2048-bit vector, computed using the
default algorithm of the RDKit library. There is a large number of fingerprinting algorithms
available (see, e.g., Cereto-Massagué et al. (2015) for an overview), and the choice to use
the default RDKit one was basically an arbitrary one.

selfies The Self-Referencing Embedded Strings (SELFIES) representation of a molecule,
which claims to be “a 100% robust molecular string representation” (Krenn et al., 2020),
and has been used for various machine learning-based cheminformatics tasks before; see,
for example, Nigam et al. (2019), Shen et al. (2021) or Frey et al. (2022).

The links to the respective Python implementations which we used for our work are given in table 3.

We note that the dataset augmented with these features is slightly smaller than then raw dataset,
because the computation of the SELFIES representation fails for around a few dozen molecules.

Train / test split: In supervised machine learning, there are typically three kinds of datasets:

1. Training data are used to train the model; for example, in the case of a neural network, the
updates to the weights are computed from passing the training data through the network and
comparing the result with the respective targets.

2. Validation data are used to monitor to training progress, and to assess if a model is overfitting:
When the error on the training set decreases and the validation error increases, it is usually
time to end the training. (Although there exists also the phenomenon of “double descent.”)

3. Test data, or evaluation data, are used to evaluate the performance of the final model. They
are held out until the training procedure is complete.

As part of our data generation routine, we split out full dataset into two files, one for training (and
validation), and one for evaluation. This happens only once, to ensure that the test set is the same for
all experiments. The split that we use was 90% training and 10% test in the case of the full dataset.
For the subset of the data which have mass spectra available (17 021 in total), we used 12 000 for
training and the rest for the evaluation. Splitting the training data into data that are actually used for
training and data that are used for validation happens at experiment time and is controlled by the
random seed of the experiment. Our typical split size is again 90% training and 10% validation.

17



Machine Learning Experiments

In this subsection, we first take a look at the experimental pipeline that we implemented before we
describe the experiments that we have conducted with it. The background and motivation for these
experiments have been discussed in the section ◁ Analysis: The Case for Machine Learning.

Experimental Pipeline Design

To make experimentation simple, fast, and reproducible, we have developed a single, modular
framework in the form of a Python package, currently called moml (“molecular machine learn-
ing”).7 Here, an “experiment” is a combination of different (hyper)-parameters—for example, the
dataset, the preprocessing steps, and the exact model specification—for which we train a machine
learning model and evaluate that model on a previously held-out part of the data to assess its
performance. For illustrative purposes, we are giving an (incomplete) overview of the possible
“experiment space” (i.e., possible combinations of parameters) in table 4.

Our framework assumes that the models that we train are typically neural networks (linear models
can be considered a special case of a neural network), which we implement using PyTorch (Paszke
et al., 2019). There exists, however, also some preliminary code that allows to work with models
that use the API of the scikit-learn library (Pedregosa et al., 2011; Buitinck et al., 2013).

Training a model is easy: One only has to run a Python script with the desired set of parameters,
which can be passed either in the form of command line arguments or as a configuration file
using the YAML format. For example, to train an LSTM-type model that takes in the SMILES
representation of a molecule and predicts the MA, one would call the training script as follows:

$ python train_pytorch.py --model lstm --feature smiles --target ma ...

The script automatically documents the parameters that were used to start an experiment, and
stores a git diff, in case that the repository containing the training code is not in a clean state.
This helps to ensure reproducibility of our results. During training, the script regularly outputs
metrics such as the training loss and error to a TensorBoard which allows to monitor the progress
visually. Common machine learning practices, such as training on a GPU, checkpointing, early
stopping (based on the validation loss), or a learning rate scheduler, are already built in by default.
Once training has finished, the final model is automatically exported and saved.

Evaluating a trained model (on a given test) is similarly easy and works as follows:

$ python evaluate_pytorch.py --experiment-dir /path/to/experiment

By default, we run every experiment several times using different random seeds (which control
both the initialization of the model’s weights and the split of the data into training and valida-
tion). The evaluation script finds and runs all these models on the test set and averages their
prediction (ensembling) for each data point. This ensemble average is then what we use to
evaluate and compare the performance of a given model configuration.

7 Code repository: https://gitlab.com/frontierdevelopmentlab/2022-us-astroinfosignatures/moml/
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Scaling up MA computation with surrogate models

Method: We are comparing four different kinds of models for the task where we predict the
molecular assembly index from different molecular representations, namely the following:

1. Baselines. The models in this category are trivial: they only ever return the mean, median,
or mode of the training distribution, that is, the “predict” the same complexity value for every
molecule. These models have, of course, no real practical use, but they can help us put the
results of the more sophisticated models into context, and help us understand the effects of
the bias that is due to the very non-uniform distribution of the training data.

2. Linear models. Models in this category receive a vector-based representation of a molecule as
input: either a mol2vec embedding, an RDKit fingerprint, or an embedding from a pre-trained
transformer model (see previous section). As an additional baseline, we also add the Bertz
and Böttcher score as predictors to check predictive they are of the MA. After all, we know
(e.g., from figure 2) that there are strong correlations between the three complexity metrics.

3. MLPs. These multi-layer perceptrons (or fully-connected neural networks) take in the same
input as the linear models. We are using models with 3 hidden layers and 1024 units each,
with LeakyReLU activations and dropout regularization (p = 0.2), which are trained using
AdamW with a learning rate of 0.0003, and a min-max normalization to [0, 1] for the inputs.

4. LSTMs. The last type of models that we consider here are Long Short-Term Memory (LSTM)
neural networks (Hochreiter and Schmidhuber, 1997), which are capable of dealing with
variable-length inputs—in our case: one-hot encoded string representations of molecules.
We use the default LSTM implementation from PyTorch, with a hidden state size of 512. To
improve the network capacity, we stack 3 LSTMs, and combine them with an small LSTM that
allows us to de-couple the size of the hidden state from the size of the final output.

All models were trained using the experimental pipeline described in the previous section. Since
the primary goals of this task was to speed up the computation of MA, during evaluation, we also
measured the time it took to process out test set (for two of our best-performing models).

Results: The first part of our results—the distribution of the relative prediction errors on the test
set—are shown in figure 3. The general ranking of the models is: 1. Baseline, 2. Linear, 3. LSTM,
4. MLP. This matches our expectation: The baselines are trivial and independent of the input, so even
a linear model should outperform them. Within the linear models, the embedding-based models
perform better than the models that only receive a single number (i.e., the Bertz or Böttcher score)
as their input. Finally, non-linear models are generally expected to perform better than linear ones,
and given the limited training data we have, it does not seem unreasonable that the MLP-based
models that operate in pre-computed embeddings outperform the LSTMs, which, before they can
estimate the MA, first need to learn to extract a useful representation from the string of a molecule.

Perhaps more surpring is the fact that within each group the performance does not seem to depend
strongly on the respective input feature. For example, all three MLP-type models basically perform
on par, regardless whether the input is an embedding from a pre-trained transformer model, from
a (conceptually much simpler) word2vec model, or even from a classical fingerprint algorithm. In
all cases, our best-performing models have a relative prediction error of around 4%. For our best-
performing model, the predicted MA was correct for 73.6% of the molecules in our test set, and for
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Figure 3: Experiment results for the “MA from molecule representation” task. We show the
distributions of the relative predictions errors on the test set (computed as |t − p|/t , where t is the
true and p the predicted MA given by an ensemble average of five models) for all model types and
input features (i.e., molecular representations).

98.1%, the absolute prediction error was ≤ 1. Considering how hard it is to compute MA using the
“classical” way (i.e., via a branch-and-bound tree search), we find these numbers to be encouraging.

Next, we can look at a comparison of the time it took to compute the MA both using the classical way,
and through two of our best-performing models, namely (1) an LSTM operating on a SMILES string,
and (2) an MLP that takes in an RDKit fingerprint. We chose these two models for the models for
different reasons: (2) gave the overall best performance (i.e., the lowest median relative prediction
error on the test set), while (1) can operate “directly” on a common molecular representation and
does not need any pre-processing or featurization of the inputs. The final numbers are shown in
table 5. The runtime for the classical algorithm, which we ran in parallel distributed over many
computing-optimized nodes on Google Cloud (each with 64 cores), was 7.6 million seconds, or
around 88 days. By comparison, our fastest model (the fingerprint-based MLP running on a GPU,
which was optimized for inference using NVIDIA’s TensorRT framework) only took 0.0073 seconds
for the same task—a speed-up factor of more than one billion. We believe that we may be able to
increase this even further by reducing the numerical precision (e.g., by switching to half precision).
However, we but we suspect that this will be of little practical relevance, because at this point, the
computational bottleneck is probably already be elsewhere (e.g., the computation of the fingerprints).

Lastly, we can have a look at how our model performs as a function of the (true) MA. The respective
plot showing these results in found in figure 4. What we observe is a clear anti-correlation between
the amount of training data for a given MA value, and the performance of the model. For example,
in the region around MA 7, where we have tens of thousands of molecules in our training set, our
median prediction error on the test set is well below 5%. On the other hand, for larger MA value
(say, greater than 15) the error increases notably. From a machine learning perspective, this is
hardly surprising: Out-of-distribution generalization (i.e., learning a model that also performs well
on inputs that differ significantly from what the model has encountered during training) is known
to be a very challenging problem, and our specific application is no exception here.
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Table 5: Experiment results for the “complexity from molecule representation” task. We are showing
the time it took to compute MA values for all molecules in our test set (size: ca. 40k), both with the
“classic” algorithm to compute MA, and for two of our best-performing surrogate models, both on
CPU and on GPU. The values for our models are computed as averages over multiple runs.

Classical* smiles + LSTM** rdkit_fingerprint + MLP**

Runtime on CPU (s): 7 597 940.25 456.76 19.21
Runtime on GPU (s): — 2.60 0.0073***

* The classic algorithm ran on C2-type Google Cloud instances with Intel® Xeon® Gold 6253CL CPUs.
** The evaluation of the ML models ran on a machine with an AMD EPYC 7662 CPU and an NVIDIA A100 GPU.

*** This configuration used NVIDIA’s TensorRT framework to optimize the model for high-performance inference.
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Figure 4: In the top panel, we are plotting the distribution of the relative prediction error on
the test set, grouped by different MA values, for our best-performing model (an MLP with an
rdkit_fingerprint as its input). In the bottom panel, we are showing a histogram of the training
data set, that is, the number of molecules in our training set for a given MA value. When taken
together, these two panels show that there is a clear anti-correlation between the amount of
training data (i.e., number of molecules in training set for a given MA) and the model performance
(i.e., relative error on test set for the given MA).
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This means that we may be able to use our model to scale up the computation of MA values
for molecules in a range for which we already have good training data. However, we need
to be extremely careful if we want to use our model also for molecules that are so complex
that they are intractable for the classical algorithm. In this case, we are not only asking our
model to extrapolate beyond its training distribution—we do not even have access to a ground
truth to assess how good or bad our model performs in this regime.

Inferring molecular complexity from mass spectral data

Note: This part of our work was also submitted to and accepted as a short paper at the “Machine
Learning and the Physical Sciences” workshop at the NeurIPS 2022 conference.8

Method: To infer molecular complexity directly from mass spectrometry data, we compare four
different approaches, all of which take a (pre-processed) mass spectrum as their input and output
all three complexity measures at once (i.e., multiple regression):

1. Baseline: A linear regression (with L2 regularization) from the number of peaks in the MS to
the complexity measure. Marshall et al. (2021) have reported a clear correlation (𝜌 = 0.89)
for the case of the MA, hence we consider this our baseline. Pre-processing the MS by
removing, for example, all peaks smaller than 5% of the highest peak, did not seem to
improve performance.

2. Linear: A linear regression (with L2 regularization) that uses a fixed-length representation of
the mass spectra (i.e., a histogram with a 1000 equally spaced bins from 0 Da to 1000 Da).

3. MLP: A fully-connected neural network (MLP) that operates on the same binned spectrum as
the linear model. All prediction targets were normalized to [0, 1] using a MinMaxScaler. The
network has 3 Linear layers (with 1024 units for the “hidden” layers) and uses LeakyReLU
activations, dropout (p = 0.2), and batch normalization. Experiments with more layers (or
units) did not seem to improve the performance. We found the networks very prone to
overfitting, perhaps not least due to the limited training data. Among the various solutions
we tried (e.g., increasing dropout), adding random noise to the input spectra during training
had the best mitigating effect here.

4. XGBoost: Gradient boosted trees as implemented by XGBoost (Chen and Guestrin, 2016),
again using the binned mass spectrum. We use default values for all parameters except that
we set n_estimators=1000 and tree_method="hist".

We trained every model five times using different random seeds that control the train / validation split,
as well as the model initialization (where applicable). Results are reported as ensemble averages.

Results: Our main results, in the form of relative prediction errors on the evaluation set, are
summarized in figure 5. Unsurprisingly, all models outperform the naïve baseline (reducing the
error by more than 50% in best case), and non-linear models perform better than the linear
one. More interestingly, we find that there is a consistent trend across all models that MA is
easier to predict than Böttcher complexity, which in turn is easier to predict than Bertz complexity

8 Workshop website: https://ml4physicalsciences.github.io

23

https://ml4physicalsciences.github.io


Bertz complexity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Re

la
tiv

e 
pr

ed
ict

io
n 

er
ro

r o
n 

te
st

 se
t

Böttcher complexity MA

Baseline
Linear
MLP
XGBoost

Figure 5: Distribution of relative predictions errors on the test set (computed as (t − p)/t , where
t is the true and p the predicted complexity value given by an ensemble average of five models
corresponding to five different random seeds) for all complexity metrics and model types.

(evidenced by respectively lower predicted errors). We speculate that this may have to do with
the definition of the MA, which is, in a way, conceptually similar to the idea of mass spectrometry:
The MA counts the number of steps to assemble a molecule from smaller pieces, while MS
observers the patterns that emerge when a molecule is fragmented.

Finally, we found that all models are slightly biased towards over-estimating MC. Closer inspection
reveals that most of this bias is caused by molecules with (relatively) low MC values, and we
hypothesize that the bias may be an effect of the fact that our MC metrics are lower-bounded by 0.

Things that did not work: We also briefly tried the following, methodologically more sophisticated
ideas. Both approaches below performed worse than the MLP and XGBoost regressor above:

1. Encode, Aggregate, Predict: Every peak of a MS—given by a position-intensity pair (pi , ii )—is
processed separately by an encoder E that produces a representation zi = E(pi , ii ). All zi of one
MS are then aggregated as z = mean(zi ), and a predictor network P estimates the MC from z.

2. Transfer learning: The core idea here was to separate the task of inferring a useful representation
of a molecule from the estimation of its complexity, and to allow us to tap into the large dataset
for which molecular representations and MC values are available, but no mass spectra. To this
end, we look again at one of the models that we trained in the previous section, which consists
of an LSTM that takes in the SELFIES representation (Krenn et al., 2020) of a molecule and
produces an embedding from which a predictor MLP P then estimates the MC. In our transfer
learning approach, we attempt to re-use this pretrained predictor P by training only an encoder
network E to take in binned mass spectra and pass the outputs (i.e., abstract representations
of the MS) to a frozen version of P to predict the MC.

Of course, these approaches might simply need more training data, or more extensive hyperparam-
eter optimization, to give competitive results. We may therefore revisit them in a future revision.
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Future Directions

Dataset improvements: During the FDL 2022 sprint, we gathered more than 1.1 billion molecules
with valid structures and string representation using the InChI or SMILES format. The sources
of these molecules are PubChem (111M), GDB-13 (977M), GDB-17 (50M random subsample),
Rad-6 (10k), Reaxys (26M), NIST (73k) and manually curated prebiotic molecules (343). However,
the majority of these molecules are small molecules. For example, the GDB-13 and GDB-17
datasets are computer-generated molecules with a maximum of 13 or 17 carbon atoms, respec-
tively. The potential chemical space of molecules is vast and it is perhaps not meaningful to
compute them all. Instead, we chose to randomly sample these datasets into smaller subsets.
By design, the target sampling size is 100k molecules from each data source for ML training,
another 100k for ML testing and 10k molecules for ML validation.

In reality, we quickly realized that even for these small subsets of molecules (100K) at the mass
range from 0–1000 Da, the limitation for completing the dataset generation is MA computation.
As outlined in the ◁ Dataset development section of this memo, after 100 000+ CPU hours of
computation over two months’ time we were only able to generate MA values for about 407k
molecules. The distribution of these molecules is not uniform: there is much less really small
and really large molecules (cf. figure 2). In addition, we focused on computing for all of the NIST
dataset, because a large fraction (about half) of this dataset contain molecules with a mass spectra.
We were able to obtain in the end about 17k mass spectra from NIST.

The tasks for dataset generation and refinement is a continuous process that requires continuous
support well beyond the short period during the FDL 2022 sprint. The dataset used for ML in
this memo represents the best that we could do given the time and resources as a team. Here
we note down ideas that can be employed to further improve the dataset. In the meantime, we
are working releasing version 1 of the dataset for NASA and for the broader scientific community,
together with a publication that will describe it in more detail and showing some applications.

1. Using a centralized queue system for dataset generation: Currently, the dataset generation
uses a CSV file with a (minimal) list of molecules as its input. This list needs to be prepared
ahead of time and is then randomly split into equally-sized chunks; one for each worker node
(i.e., Google Cloud instance). The number of chunks are set at the start of the data generation
and cannot be changed during the generation process. During processing, each chunk is send
to a separate Docker container which processes the assigned molecules and runs until the
entire chunk of molecules is completed. We designed the Docker container to save output files
in a bucket on Google Cloud Storage. While this system does work, we believe that a better
way to implement the data generation would be to use a central queue which stores the list of
molecules to process, and from which workers pull the next batch of molecules, instead of us
pushing a fixed set of molecules to each node at the start. Such a system is more robust to
failures of individual nodes, ensures better utilization of the available resources, and would allow
us to keep adding (or removing) molecules to the queue while the data generation is running.
With this setup, it would also make sense for the worker nodes to add their results to a single,
shared database (e.g., Google BigQuery or Google BigTable), instead of saving the results as
CSV files, which then need to be merged.

2. Improving MA computation by using better algorithms that target MA upper bound : MA compu-
tation for very large molecules currently can take a very long time. We developed the various
ML models in this memo to speed it up to try to solve this problem. Nevertheless, computing
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exact MA values for sufficiently large quantities of large molecules is required for ML training
and validation. The idea here is to improve MA computation by first producing an upper bound
on the MA, and then spending a given amount of computation time on reducing that bound.
That way, we also get some result for the MA of a molecule, and no computation time is wasted,
unlike for our current approach, where we skip on a molecule that we could not fully compute
before reaching the timeout, meaning all the computation is essentially lost. This approach
would require working collaboratively with authors of Marshall et al. (2021) to modify the source
code (written in Go) accordingly. Under this directive, we can also develop a hybrid approach
that combine ML and classic computing to target large molecule MA computation.

3. More molecules and better labelled molecules in association with source environments and
chemical reaction networks: We would like to extend the dataset by computing complexity scores
for more molecules, and especially molecules with better labels that contain source environmen-
tal information. Having environmental information would be the key to better characterize the
link between molecular complexity and chemical reaction networks. This is because, in addition
to characterizing the complexity of molecules, the other class of complexity: the complexity
of chemical reactions that produce these molecules in the first place is an exciting area of
new research. However, this topic remains a challenge primarily because of the lack of data.
Typically, most databases of organic molecules are sourced from and heavily biased towards
Earth biochemistry. The organic molecules in these databases can be very large and complex,
due to the complex pathways that life evolved in order to make them. Consequently, because
our Earth is filled with biological processes, we do not have a handle on purely abiotic chemical
reactions and their capacity to generate complex molecules. This is an urgent problem that
needs to be solved in astrobiology. We think that the framework outlined in our data generation
pipeline can be extended to incorporate more data on abiotic chemical reactions. Doing so
would require additional support from NASA on database development and curation.

4. Characterizing molecular mixtures and their environments: Real world samples are always going
to contain mixtures of molecules. With the development of tandem mass spectrometry, these
molecular mixtures can be effectively separated and characterized. Therefore, the datasets
generated by tandem mass spectrometry systems are likely groups of molecules rather than
single molecules. This kind of dataset presents a new opportunity: to characterize groups of
molecules all together and map them in the chemical reaction network space. During FDL 2022,
we brainstormed how to approach the analysis of such datasets, for example: (1) Plotting the
distribution of complexity metrics in a histogram. This distribution may be useful for fingerprinting
the source environment. (2) Accessing the complexity of the reaction network space (assuming
all molecules are connected through steps of chemical reactions). This problem could be
approached for example by examining the shared assembly of the group (Liu et al., 2021). We
would need more datasets formulated in this fashion (molecular groups) in order to approach
how best to characterize them. These questions would need to be resolved before we can
employ meaningful techniques (including new ML algorithms) to access the probability that the
molecular mixtures are produced by life or not. Currently, datasets formatted in this fashion are
not yet available, but we envision that we could extend the data generation pipeline and design
new data attributes to tag molecular groups.

5. Integrating different types of tandem mass spectrometry data: Currently we use mass spectrom-
etry data from NIST, which is based on a standard mass spectrometer using electron ionization.
However, there are many more configurations of mass spectrometry data that operate in tandem
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during the measurement, for example GC-MS, LC-MS or MS-MS. In addition, there are varied
ways to produce the ion used in mass spectrometry separation (positive vs. negative ion mode,
energy levels, etc.). We did not consider these instrumentation variations during the FDL 2022
sprint. These mass spectra data features should be more carefully evaluated, and likely we
would need additional data columns or metadata to properly sort out these variations.

6. Integrate other types of spectrometry data (optical spectrometry), or other classes of datasets:
It is also possible to incorporate other types of spectrometry data that contain molecular informa-
tion, such as optical spectrometry using Raman and FTIR. Appending these additional dataset
into our data is exciting, which will also offer more ML experiments down the road.
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CONCLUSION

In conclusion, during FDL 2022, as a team we worked towards reaching goals set at three different
tiers for the sprint: a Minimal Goal, a Target Goal, and a Bold & Crazy Goal.

For the Minimal Goal, we carefully curated and generated a dataset of more than 400K molecules
for which we computed all three complexity metrics: MA, Bertz and Böttcher scores. This
dataset includes 17k unique molecules with mass spectra.

For the Target Goal, we conducted various ML experiments aimed at two main tasks: (1) to speed
up the computation of MA and (2) to infer molecular complexity directly from mass spectrometry
data.

To achieve these goal, we developed two Python packages: complexipy and moml. complexipy is
focused on data processing and computation for molecular complexity metrics. moml is focused
on producing an easy-to-deploy, streamlined ML experimentation platform and for training, char-
acterizing and benchmarking ML models. Our results are promising and we show that not only
ML methods are effective at speeding up MA computations using surrogate ML models (speed
improvements up to a billion fold faster depending on the hardware used), but also they can be
used to predict molecular complexity directly from experimental datasets such as the mass spectra.
Compared with the baseline that count the number of peaks in mass spectra (Marshall et al., 2021),
linear ML models can reduce prediction error by more than 50%. Non-linear ML models performed
better than the linear models. These results demonstrate that ML are effective and practical tools
for characterizing molecular complexity from either string representations of molecules as well as
raw output data directly from instruments on-board remote robotic spacecrafts. These ML methods
can indeed be further integrated in future space missions with enormous potential benefits.

For the Bold & Crazy Goal, we characterized the potential benefits of using ML models quantita-
tively and comparatively. These characterizations will help the future design of such autonomous
systems. Some experiments were done, for example, looking at how tolerant are our ML models
at ingesting mass spectra at various noise levels. We show that our ML models are effective
in this regard, tolerating noise during training without significantly affecting the prediction er-
rors. In addition, we examined ML pruning, which simulates the reduction of hardware capacity
(the available artificial neurons) while not sacrificing prediction error. These benchmarks are
useful for examining realistic hardware limitations and are the first steps necessary towards ML-
deployments on real mission hardware. We are eager to share these results and work with
teams at NASA and its collaborators, wherever possible, to further refine our models and find
opportunities to deploy them on forthcoming missions to other planetary bodies.
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