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1 Heliophysics Science Division, NASA, Goddard Space Flight Center, Greenbelt, MD 20771, USA
2 The Catholic University of America, Washington, DC 20064, USA
3 Rosseland Center for Solar Physics, University of Oslo,P.O. Box 1029 Blindern, NO-0315 Oslo, Norway
4 Institute of Theoretical Astrophysics, University of Oslo,P.O. Box 1029 Blindern, NO-0315 Oslo, Norway
5 Frontier Development Lab, Mountain View, CA 94043, USA
6 SETI Institute, Mountain View, CA 94043, USA
7 Lockheed Martin Solar & Astrophysics Laboratory (LMSAL), Palo Alto, CA 94304, USA
8 Université Paris-Saclay, CNRS, Institut d’astrophysique spatiale, Orsay, France
9 OATML, Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK

10 Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK
11 Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK

Received 2 December 2020 / Accepted – – —-

ABSTRACT

Context. Solar activity plays a quintessential role in influencing the interplanetary medium and space-weather around Earth. Remote
sensing instruments on-board heliophysics space missions provide a pool of information about the Sun’s activity, via the measure-
ment of its magnetic field and the emission of light from the multi-layered, multi-thermal, and dynamic solar atmosphere. Extreme
UV (EUV) wavelength observations from space help in understanding the subtleties of the outer layers of the Sun, namely the chro-
mosphere and the corona. Unfortunately, such instruments, like the Atmospheric Imaging Assembly (AIA) on-board NASA’s Solar
Dynamics Observatory (SDO), suffer from time-dependent degradation that reduces their sensitivity. Current state-of-the-art calibra-
tion techniques rely on sounding rocket flights to maintain absolute calibration, which are infrequent, complex, and limited to a single
vantage point.
Aims. We aim to develop a novel method based on machine learning (ML) that exploits spatial patterns on the solar surface across
multi-wavelength observations to auto-calibrate the instrument degradation.
Methods. We establish two convolutional neural network (CNN) architectures that take either single-channel or multi-channel input
and train the models using the SDOML dataset. The dataset is further augmented by randomly degrading images at each epoch with
the training dataset spanning non-overlapping months with the test dataset. We also develop a non-ML baseline model to assess the
gain of the CNN models. With the best trained models, we reconstruct the AIA multi-channel degradation curves of 2010–2020 and
compare them with the sounding-rocket based degradation curves.
Results. Our results indicate that the CNN-based models significantly outperform the non-ML baseline model in calibrating instru-
ment degradation. Moreover, multi-channel CNN outperforms the single-channel CNN, which suggests the importance of cross-
channel relations between different EUV channels for recovering the degradation profiles. The CNN-based models reproduce the
degradation corrections derived from the sounding rocket cross-calibration measurements within the experimental measurement un-
certainty, indicating that it performs equally well when compared with the current techniques.
Conclusions. Our approach establishes the framework for a novel technique based on CNNs to calibrate EUV instruments. We
envision that this technique can be adapted to other imaging or spectral instruments operating at other wavelengths.

Key words. Sun: activity, UV radiation, and general - Techniques: image processing - Methods: data analysis - telescopes

1. Introduction

Solar activity plays a significant role in influencing the inter-
planetary medium and space weather around Earth and all the
other planets of the solar system (Schwenn 2006). Remote-
sensing instruments on-board heliophysics missions can provide
a wealth of information on the Sun’s activity, primarily via cap-
turing the emission of light from the multi-layered solar atmo-
sphere, thereby leading to the inference of various physical quan-
tities such as magnetic fields, plasma velocities, temperature and
emission measure, to name a few.

NASA currently manages the Heliophysics System Observa-
tory (HSO), which consists of a group of satellites that constantly

monitor the Sun, its extended atmosphere, space environments
around Earth and other planets of the solar system (Clarke 2016).
One of the flagship missions of HSO is the Solar Dynamics Ob-
servatory (SDO, Pesnell et al. 2012). Launched in 2010, SDO
has been instrumental in monitoring the Sun’s activity, and pro-
viding a high volume of valuable scientific data every day with a
high temporal and spatial resolution. It has three instruments on-
board: the Atmospheric Imaging Assembly (AIA, Lemen et al.
2012), which records high spatial and temporal resolution im-
ages of the Sun in the ultraviolet (UV) and extreme UV (EUV);
the Helioseismic & Magnetic Imager (HMI, Schou et al. 2012),
that provides maps of the photospheric magnetic field, solar sur-
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Fig. 1. Set of images to exemplify how degradation affects the AIA channels. The two sets are composed of seven images from different EUV
channels. From left to right: AIA 94 Å, AIA 131 Å, AIA 304 Å, AIA 335 Å, AIA 171 Å, AIA 193 Å, and AIA 211 Å. The top row corresponds
to images from May 13th, 2010 and the bottom row shows images from August 31st, 2019, with no degradation correction. The 304 Å channel
images are in log-scale due the severe degradation.

face velocity and continuum filtergrams; and the EUV Variabil-
ity Experiment (EVE, Woods et al. 2012), which measures the
solar EUV spectral irradiance.

Over the past decade, SDO has played a central role in ad-
vancing our understanding of the fundamental plasma processes
governing the Sun and space weather. This success can mainly
be attributed to its open-data policy and a consistent high data-
rate of approximately two terabytes of scientific data per day.
The large volume of data accumulated over the past decade (over
12 petabytes) provides a fertile ground to develop and apply
novel machine learning (ML) based data processing methods.
Recent studies, such as, predicting solar flares from HMI vector
magnetic fields (Bobra & Couvidat 2015), creating high-fidelity
virtual observations of the solar corona (Salvatelli et al. 2019 &
Cheung et al. 2019), forecasting far side magnetograms from the
Solar Terrestrial Relations Observatory (STEREO, Kaiser et al.
2008) EUV images (Kim et al. 2019), super-resolution of mag-
netograms (Jungbluth et al. 2019), and mapping EUV images
from AIA to spectral irradiance measurements (Szenicer et al.
2019), have demonstrated the immense potential of ML appli-
cations in solar and heliophysics. In this paper, we leverage the
availability of such high quality continuous observations from
SDO and apply ML techniques to address the instrument cali-
bration problem.

One of the crucial issues that limit the diagnostic capabili-
ties of SDO-AIA mission is the degradation of sensitivity over
time. Sample images from the seven AIA EUV channels in Fig. 1
show an example of such a deterioration. The top row shows the
images observed during the early days of the mission, from 13
May 2010, and the bottom row shows the corresponding images
observed more recently on 31 August 2019, scaled within the
same intensity range. It is clear that the images in the bottom
row appear to be significantly dimmer compared to their top row
counterparts. In some channels, especially 304 Å and 335 Å the
effect is pronounced.

The dimming effect observed among the channels is due
to the temporal degradation of that EUV instruments in space
that is also known to diminish the overall instrument sensitivity
with time (e.g., BenMoussa et al. 2013). The possible causes in-
clude either the out-gassing of organic materials in the telescope
structure, which may deposit on the optical elements (Jiao et al.
2019), or the decrease in detector sensitivity due to exposure to
EUV radiation from the Sun.

In general, first-principle models predicting the sensitivity
degradation as functions of time and wavelength are not suffi-
ciently well-constrained for maintaining the scientific calibra-
tion of such instruments. To circumvent this problem, instru-
ment scientists have traditionally relied on empirical techniques,
such as considering sources with known fluxes, the so-called
"standard candles". However no standard candles exist on the
solar atmosphere at these wavelengths since the solar corona is
continuously driven and structured by evolving magnetic fields
which caused localized and intermittent heating. This causes
even the quiet Sun brightness in the EUV channels to vary signif-
icantly depending on the configuration of the small-scale mag-
netic fields (Shakeri et al. 2015, and the references therein). On
the one hand, the Sun may not be bright enough to appear in
the hotter EUV channels such as AIA 94 Å . On the other hand,
active regions (ARs) have EUV fluxes that can vary by several
orders of magnitude depending on whether it is in an emerging, a
flaring or a decaying state. Moreover, the brightness depends on
the complexity of the AR’s magnetic field (van Driel-Gesztelyi
& Green 2015). Finally, ARs in the solar corona can evolve on
the time scales ranging from a few minutes to several hours, lead-
ing to obvious difficulties in obtaining a standard flux for the
purpose of calibration.

Current state-of-the-art methods to compensate for this
degradation rely on cross-calibration between AIA and EVE
instruments. The calibrated measurement of the full-disk solar
spectral irradiance from EVE is passed through the AIA wave-
length (filter) response function, to predict the integrated AIA
signal over the full field of view. Later, the predicted band ir-
radiance is compared with the actual AIA observations (Boerner
et al. 2014). The absolute calibration of SDO-EVE is maintained
through periodic sounding rocket experiments (Wieman et al.
2016) that use a near-replica of the instrument on-board SDO
to gather a calibrated observation spanning the short interval of
the suborbital flight (lasting a few minutes). A comparison of
the sounding rocket observation with the satellite instrument ob-
servation provides an updated calibration, revealing long-term
trends in the sensitivities of EVE and, thus, of AIA.

Sounding rockets are undoubtedly crucial; however, the
sparse temporal coverage (there are flights roughly every 2
years), and the complexities of inter-calibration are also potential
sources of uncertainty in the inter-instrument calibration. More-
over, the inter-calibration analysis has long latencies, of months
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and sometimes years, between the flights and when the calibra-
tion can be updated, due to data analysis of the obtained data
during the flight; also this kind of calibrations are limited to ob-
servations from Earth, and thus cannot easily be used to calibrate
missions in deep space (e.g., STEREO).

In this paper, we focus on automating the correction of the
sensitivity degradation of different AIA wavebands by using ex-
clusively AIA information and adopting a deep neural network
(DNN, Goodfellow et al. 2016) approach, which exploits the
spatial patterns and cross-spectral correlations among the ob-
served solar features in multi-wavelength observations of AIA.
We compare our approach with a non-ML method motivated by
solar physics heuristics, which we call the baseline model. We
evaluate the predicted degradation curves with the ones obtained
through the sounding rocket cross-calibration described above.
To the best of our knowledge this is the first attempt to develop
a calibration method of this kind.1 We believe that the approach
developed in this work could potentially remove a major imped-
iment to developing future HSO missions that can deliver solar
observations from different vantage points beyond Earth’s orbit.

The paper is structured as follows: in Section 2, we present
and describe our dataset. In Section 3 we illustrate the technique
and how it has been developed. Namely, in § 3.1 we state the
hypothesis and propose a formulation of the problem, in § 3.2
we present the CNN models, in § 3.3 we describe the training
process and the evaluation, in § 3.4 we probe the multi-channel
relationship and in § 3.5 we reconstruct the temporal degrada-
tion curve. Furthermore, in Section 4 we present the baseline,
followed by Section 5 where we present and discuss the results.
The concluding remarks are in Section 6.

2. Data description and pre-processing

We use for this study the pre-processed SDO-AIA dataset from
Galvez et al. (2019, hereafter referred to as SDOML). This
dataset is ML-ready to be used for any kind of application re-
lated to the AIA and HMI data and it consists of a subset of the
original SDO data ranging from 2010 to 2018. It comprises of
the 7 EUV channels, 2 UV channels from AIA and vector mag-
netograms from HMI. The data from the two SDO instruments
are temporally aligned, with cadences chosen to be 6 minutes
for AIA (instead of the original 12 seconds) and EVE, and 12
minutes for HMI. The full disk images are downsampled from
4096 × 4096 to 512 × 512 pixels and have identical spatial sam-
pling of ∼ 4′′.8 per pixel.

In SDOML the AIA images have been compensated for the
exposure time and corrected for instrumental degradation over
time using piecewise-linear fits to the V8 corrections released by
the AIA team in November 2017.2 These corrections are based
on cross-calibration with SDO-EVE, where the EVE calibration
is maintained by periodic sounding rocket under flights (includ-
ing, in the case of the V8 corrections, a flight in 1 June 2016).
Consequently, the resulting dataset offers images where changes

1 We presented an early-stage result of this work as an extended ab-
stract at the NeurIPS workshop on ML and Physical Sciences 2019
(which has no formal proceedings) (NeurIPS 2019, Neuberg et al.
2019) where we described some preliminary results in this direction.
In this paper we extend the abstract with full analyses and discussion
of several important issues, such as the performance on the real degra-
dation curve and the limitations of the presented models, that are both
crucial to evaluate the applicability of this ML based technique.
2 Available at https://aiapy.readthedocs.io/en/stable/
generated/gallery/instrument_degradation.html#
sphx-glr-generated-gallery-instrument-degradation-py

in pixel brightness are directly related with the state of the Sun
rather than instrument performance.

In this paper, we applied a few additional pre-processing
steps. First, we downsampled the SDOML dataset to 256 × 256
pixels from 512 × 512 pixels. We established that 256 × 256
is a sufficient resolution for the predictive task of interest (in-
ference of a single coefficient) and the reduced size enabled a
quicker processing and a more efficient use of the computational
resources. Secondly, we masked the off-limb signal (r > R�) to
avoid possible contamination due to the telescope vignetting. Fi-
nally, we re-scaled the brightness intensity of each AIA channel
by dividing the image intensity by a channel-wise constant fac-
tor. These factors represent the approximate average AIA data
counts in each channel and across the period from 2011 to 2018
(derived from Galvez et al. 2019), and this re-scaling is imple-
mented to set the mean pixel values close to unity in order to
improve the numerical stability and the training convergence of
the CNN. Data normalization such as this is standard practice
in NNs (Goodfellow et al. 2016). The specific values for each
channel are reported in Appendix A.

3. Methodology

3.1. Formulation of the problem

It is known that some bright structures in the Sun are observed
across different wavelengths. Figure 2 shows a good example
from 07 April 2015 of a bright structure in the center of all seven
EUV channels from AIA. Based on this cross-channel struc-
ture, we establish an hypothesis divided in two parts. First is
that there is a relationship between the morphological features
and the brightness of solar structures in a single channel (e.g.,
typically, dense and hot loops over ARs). Second is that such a
relationship between the morphological features and the bright-
ness of solar structures can be found across multiple channels of
AIA. We hypothesize that both these relationships can be used
to estimate the dimming factors and that a deep learning model
can automatically learn these inter- and cross-channel patterns
and exploit them for accurately predicting the dimming factor of
each channel.

To test our hypothesis we consider a vector C = {Ci, i ∈
[1, ..., n]} of multi-channel, synchronous SDO/AIA images,
where Ci denotes the i-th channel image in the vector, and a
vector α = {αi, i ∈ [1, ..., n]}, where αi is the dimming factor in-
dependently sampled from the continuous uniform distribution
between [0.01, 1.0]. We choose an upper bound value of αi = 1,
since we only consider dimming of the images and not enhance-
ments. Further we create a corresponding vector of dimmed im-
ages as D = {αiCi, i ∈ [1, ..., n]}, where D is the corresponding
dimmed vector. It is also to be noted that the dimming factors αi
are applied uniformly per channel and are not spatially depen-
dent. The spatial dependence of the degradation is assumed to
be accounted for by regularly updated flat-field corrections ap-
plied to AIA images. Our goal in this paper is to find a deep
learning model M : D → α that retrieves the vector of multi-
channel dimming factors α from the observed SDO-AIA vector
D.

3.2. Convolutional Neural Network Model

Deep learning is a very active sub-field of machine learning
that focuses on specific models called deep neural networks
(DNNs). A DNN is a composition of multiple layers of linear
transformations and non-linear element-wise functions (Good-
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Fig. 2. A co-located set of images of the seven EUV channels of AIA to exemplify structures that are observed across different wavelengths. From
left to right: AIA 94 Å, AIA 131 Å, AIA 304 Å, AIA 335 Å, AIA 171 Å, AIA 193 Å, and AIA 211 Å.

fellow et al. 2016). One of the main advantages of deep learn-
ing is that it can learn from the data the best feature repre-
sentation for a given task, without the need to manually en-
gineer such features. DNNs have produced state-of-the-art re-
sults in many complex tasks including object detection in im-
ages (He et al. 2016), speech recognition (Amodei et al. 2016)
and synthesis (Oord et al. 2016), translation between languages
(Wu et al. 2016). A DNN expresses a differentiable function
Fθ : X → Y that can be trained to perform complex non-linear
transformations, by tuning parameters θ using gradient-based
optimization of a loss (also known as objective or error) func-
tion L(θ) =

∑
i l(Fθ(xi), yi) for a given set of inputs and desired

outputs {xi, yi}.

For the degradation problem summarized in Section 3.1, we
consider two CNN architectures (LeCun & Bengio 1995). The
first architecture does not exploit the spatial dependence across
multi-channel AIA images, therefore ignoring any possible re-
lationship that different AIA channels might have, and it is de-
signed to explore only the relationship across different structures
in a single channel. This architecture is a test for the first hypoth-
esis in Section 3.1. The second architecture is instead designed
to exploit possible cross-channel relationships while training and
it tests our second hypothesis, that solar surface features appear-
ing across the different channels will make a multi-channel CNN
architecture more effective than a single channel CNN that only
exploit inter-channel structure correlations. The first model con-
siders a single channel as input in the form of a tensor with shape
1 × 256 × 256 and have a single degradation factor α as output.
The second model takes in multiple AIA channel images simul-
taneously as an input with shape n × 256 × 256 and output n
degradation factors α = {αi, i ∈ [1, ..., n]}, where n is the number
of channels as indicated in Fig. 3.

The single- and multi-channel architectures are described in
(Fig. 3). They both consist of two blocks of a convolutional layer
followed by ReLU (rectified linear unit) activation function (Nair
& Hinton 2010) and a max pooling layer. These are followed by
a fully connected (FC) layer and a final sigmoid activation func-
tion that is used to output the dimming factors. The first convolu-
tion block has 64 filters, while the second convolution block has
128. In both convolution layers the kernel size is 3, meaning the
filters applied on the image are 3 × 3 pixels, and the stride is 1,
meaning that the kernel slides through the image 1 pixel per step.
No padding is applied (i.e., no additional pixels are added at the
border of the image to avoid a change in size). The resulting to-
tal learnable parameters (LP) are 167, 809 for the single-channel
model and 731, 143 for the multi-channel model. The final con-
figurations of the models’ architectures were obtained through a
grid search among different hyperparameters and layer config-
urations. More details of the architectures can be found in Ap-
pendix B.

Fig. 3. The CNN architectures used in this paper. At the top the single-
channel architecture with a single wavelength input and composed of
two blocks of a convolutional layer, ReLU activation function and max
pooling layer, followed by a fully connected (FC) layer and a final sig-
moid activation function. At the bottom the multi-channel architecture
with a multi wavelength input and composed of two blocks of a convolu-
tional layer, ReLU activation function and max pooling layer, followed
by a fully connected (FC) layer and a final sigmoid activation function.
Figures constructed with Iqbal (2018)

We use the open-source software library PyTorch (Paszke
et al. 2017) to implement the training and inference code for the
CNN.

3.3. Training Process

The actual degraded factors αi(t) (where t is the time since the
beginning of the SDO mission, and i is the channel) trace a single
trajectory in an n-dimensional space starting with αi(t = 0) = 1
∀ i ∈ [1, ..., n] at the beginning of the mission. During training,
we intentionally exclude this time-dependence from the model.
This is done by (1) using the SDOML dataset which has already
been corrected for degradation effects, (2) not assuming any re-
lation between t and α and not using t as an input feature, and (3)
temporally shuffling the data used for training. As presented in
section 3.1, we degrade the each set of multi-channel images C
by a unique α = {αi, i ∈ [1, ..., n]}. We then devised a strat-
egy such that from one training epoch to the next, the same set
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of multi-channel images can be dimmed by a completely inde-
pendent set of α dimming factors. This is a data augmentation
and regularization procedure which allows the model to general-
ize and perform well in recovering dimming factors over a wide
range of solar conditions.

The training set comprises multi-channel images C obtained
during the months of January to July from 2010 to 2013 obtained
every six hours, amounting to a total of 18, 970 images in 2, 710
timestamps.The model was trained using 64 samples per mini-
batch and the training has been performed for 1, 000 epochs. In
the concept of minibatch we don’t use the full dataset to calcu-
late the gradient descent and propagate back to update the pa-
rameters/weights of the network. We correct the weights as the
model is still going through the data. This way, we lower the
computation cost, and yet we’re still get lower variance than by
using whole dataset to calculate the gradient. As a consequence
of our data augmentation strategy, after 1000 epochs the model
has been trained with 2, 710, 000 unique sets of (input, output)
pairs, since we used different set of α each epoch. We used the
Adam optimizer (Kingma & Ba 2014) in our training with an
initial learning rate of 0.001 and the mean squared error (MSE)
of the the predicted degradation factor (αP) and the ground truth
value (αGT ) was used as the training objective (loss).

The test dataset, i.e., the sample of data used to provide an
unbiased evaluation of a model fit on the training dataset, holds
images obtained during the months of August to October be-
tween 2010 and 2013, again every six hours per day, totaling
9, 422 images over 1, 346 timestamps. The split by month be-
tween the training and test data has a two fold objective: (1) it
prevents the bias due to the variation in the solar cycle thereby
allowing the model to be deployed in future deep space missions
forecasting α for future time steps, and (2) it ensures that the
same image is never present in both the datasets (any two im-
ages adjacent in time will approximately be the same), leading
to a more precise and a comprehensive evaluation metric.

3.4. Toy Model Formulation to Probe the Multi-Channel
Relationship

Using the described CNN model, we tested the hypothesis us-
ing a toy dataset, which is simpler than the SDOML dataset. We
tested if the physical relationship between the morphology and
brightness of solar structures (e.g., ARs, coronal holes) across
multiple AIA channels would help the model prediction. For this
purpose, we created artificial solar images, in which a 2D Gaus-
sian profile is used (Equation 1) to mimic the Sun as an idealized
bright disk with some center-to-limb variation:

Ci(x, y) = Ai exp (−[x2 + y2]σ−2), (1)

where A is the amplitude centered at (0, 0), characteristic width
σ, and x and y, are the coordinates at the image. σ is sampled
from a uniform distribution between 0 and 1. These images are
not meant to be a realistic representation of the Sun. However,
as formulated in Eq. 1, they include two qualities we posit to be
essential for allowing our auto-calibration approach to be effec-
tive. The first is the correlation of intensities across wavelength
channels (i.e., ARs tend to be bright in multiple channels). The
second is the existence of a relationship between the spatial mor-
phology of EUV structures with their brightness. This toy dataset
is designed so that we can independently test how the presence
of (a) a relation between brightness Ai and size σ, and (b) a re-
lation between Ai for various channels; and the presence of both

Table 1. The mean squared error (MSE) for all combinations proposed
in Section 3.4. The top-left cell is for the scenario when there exists a
cross-channel correlation and a relation between brightness and size of
the artificial Sun. The top-right cell, has is the loss with a cross-channel
correlation but not the relation between brightness and size. The bottom
left cell has the loss when there is no cross-channel correlation, but it has
a relation between brightness and size. The bottom right cell presents
the loss when the parameters are freely chosen.

Brightness and size
correlation

Yes No
Cross-channel

correlation
Yes 0.017 0.023
No 0.027 0.065

(a) and (b) influences performance. To evaluate this test we will
use the MSE loss and expect the presence of both (a) and (b) to
minimize this loss.

The test result of the multi-channel model with artificial solar
images is shown in Table 1. We can see that when A0 ∝ σ (linear
relation between size and brightness) and Ai = Ai

0 (i.e., depen-
dence across channels; here i superscript denotes A0 raised to the
i-th power), the CNN solution delivered minimal MSE loss (top-
left cell). Eliminating the inter-channel relationship (i.e., each Ai
was randomly chosen) or the relation between brightness Ai and
size σ, the performance suffered increasing the MSE loss. Ul-
timately, when both Ai and σi were randomly sampled for all
channels, the model performed equivalently to randomly guess-
ing/regressing (bottom-right cell) and having the greater loss of
all tests. These experiments confirm our hypothesis and indi-
cate that a multi-channel input solution will outperform a single-
channel input model, in presence of relationships between the
morphology of solar structures and their brightness across the
channels.

3.5. Reconstruction of the Degradation Curve using the CNN
Models

In order to evaluate the model in a different dataset from the
one used in the training process, we use both single-channel
and multi-channel CNN architectures to recover the instrumen-
tal degradation over entire period of SDO (from 2010 to 2020).
To produce the degradation curve for both CNN models we use
an equivalent dataset of the SDOML dataset but without com-
pensating the images for degradation and having data from 2010
to 2020. All other pre-processing steps including masking the
solar limb, re-scaling the intensity etc. remain unchanged. The
CNN’s estimates of degradation are then compared to the degra-
dation estimates obtained from cross-calibration with irradiance
measurements, computed by the AIA team using the technique
described in (Boerner et al. 2014).

The cross-calibration degradation curve relies on the daily
ratio of AIA observed signal to the AIA signal predicted by
SDO-EVE measurements up through the end of EVE MEGS-
A operations in May 2014. From May 2014 onwards, the ra-
tio is computed using the FISM model (Chamberlin et al. 2020)
in place of the EVE spectra. FISM is tuned to SDO-EVE, so
the degradation derived from FISM agrees with the degradation
derived from EVE through 2014. However, the uncertainty in
the correction derived from FISM is greater than that derived
from EVE observations, primarily due to the reduced spectral
resolution and fidelity of FISM compared to SDO-EVE. While
the EVE-to-AIA cross-calibration introduced errors of approxi-
mately 4% (on top of the calibration uncertainty intrinsic to EVE
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itself), the FISM-to-AIA cross-calibration has errors as large as
25%.

We examined both V8 and V9 of the cross-calibration degra-
dation curve. The major change from V8 calibration (released
in November 2017, with linear extrapolations extending the ob-
served trend after this date) to V9 (July 2020) is based on the
analysis of the EVE calibration sounding rocket flown on 18
June 2018. The analysis of this rocket flight resulted in an ad-
justment in the trend of all channels during the interval covered
by the FISM model (from May 2014 onwards), as well as a 20%
shift in the 171 Å channel normalization early in the mission.
This changes become more clear when looking at Fig. 6 at Sec.5.
The uncertainty of the degradation correction during the period
prior to May 2014, and on the date of the most recent EVE rocket
flight, is dominated by the ∼ 10% uncertainty of the EVE mea-
surements themselves. For periods outside of this (particularly
periods after the most recent rocket flight), the uncertainty is a
combination of the rocket uncertainty and the errors in FISM in
the AIA bands (approximately 25%).

Moreover we obtain and briefly analyze the feature maps
from the second max pooling layer from the multi-channel
model. Feature map is simply the output of one mathematical fil-
ter applied to the input. Looking at the feature maps we expand
our understanding of the model operation. This process helps to
shine light over the image processing and provides insight into
the internal representations combining and transforming infor-
mation from seven different EUV channels into the seven dim-
ming factors.

4. Baseline Model

We compare our DNN approach to a baseline motivated by the
assumption that the EUV intensity outside magnetically ARs,
i.e. the quiet Sun, is invariant in time (a similar approach is also
considered for the in-flight calibration of some UV instruments,
e.g. Schühle et al. 1998). A similar assumption in measuring the
instrument sensitivity of the Solar & Heliospheric Observatory
(SOHO, Domingo et al. 1995) CDS was also adopted by Del
Zanna et al. (2010), where they assumed that the irradiance vari-
ation in the EUV wavelengths is mainly due to the presence of
ARs on the solar surface and the mean irradiance of the quiet
Sun is essentially constant over solar cycle. Though there are
evidences of small-scale variations in the intensity of quiet Sun
when observed in the transition region (Shakeri et al. 2015), their
contribution is insignificant in comparison to their AR counter-
parts. The baseline and its method is described in the following
passage.

It is important to remark that we use exactly the same data
pre-processing and splitting approach like the one used for the
neural network model described in Sect. 3.3. From the processed
dataset, a set of reference images per channel, Cref , are selected
at time t = tref . Since the level of solar activity continuously
evolves in time, we only select the regions of the Sun that cor-
respond to low activity, as discussed in the preceding paragraph.
Furthermore, the activity level is decided based on co-aligned
(with AIA) magnetic field maps from HMI. To define these re-
gions, we first make a square selection with a diagonal of length
2R� centered at R = 0 of the solar images, so as to avoid LOS
projection effects towards the limb. We then apply an absolute
global threshold value of 5 Mx cm−2 on the co-aligned HMI
LOS magnetic field maps corresponding to t = tref , such that
only those pixels that have BLOS less than the threshold are ex-
tracted, resulting in a binary mask with 1 corresponding to the
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Fig. 4. Histograms of the pixel values for 304 Å channel. In blue the
histogram for the refence image and in red the histogram for the dimmed
image. The y-axis is the number of pixels, and the x-axis is the pixel
intensity [DN/px/s]. The modes are marked with blue and red line for
the reference and dimmed images respectively.

pixels of interest and 0 the rest. Finally, we use this mask to ex-
tract the co-spatial quiet Sun (less active) pixels from each AIA
channel and compute the respective 1D histograms of the inten-
sity values as shown in Fig. 4. Now, based on the assumption that
the intensity of the quiet Sun area does not change significantly
over time (as discussed in the preceding section), we chose to
artificially dim these regions by multiplying them with a con-
stant random factor between 0 and 1. Naturally, values close to 0
will make the images progressively dimmer. The histograms for
the dimmed and the original (undimmed) quiet Sun intensities
for the AIA 304 Å channel are shown in Fig. 4. The idea is to
develop a non-machine learning approach that could be used to
retrieve this dimming factor.

From Fig. 4 we find that both the dimmed and undimmed
1D histograms have a skewed shape, with a dominant peak at
lower intensities and extended tails at higher intensities. Such
skewed distribution for the quiet Sun intensities has been re-
ported by various studies in the past (see Shakeri et al. 2015),
where they have been modelled as either a sum of two Gaussians
(Reeves et al. 1976) or a single log-normal distribution (Griffiths
et al. 1999; Fontenla et al. 2007). Despite an increased number of
free parameters in double Gaussian fitting, Pauluhn et al. (2000)
showed that the observed quiet Sun intensity distribution could
be fitted significantly better with a single log-normal distribu-
tion. The skewed representation, such as the one shown for the
304 Å channel, was also observed for all the other EUV chan-
nels, indicating that the criterion for masking the quiet Sun pixels
described here is justified.

We then compute the mode (most probable value) of both
the dimmed and undimmed log-normal distributions and indi-
cate them by Imp

i,ref (where i implies the AIA channel under con-
sideration and mp stands for the modal value for the undimmed
images), and Imp

i representing the modal intensity value for the
corresponding images dimmed with a dimming factor (say αi).
These are indicated by blue and red vertical lines in Fig. 4. Sub-
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sequently, the dimming factor is obtained by computing the ratio
between the two most probable intensity values according to the
following equation:

αi :=
Imp
i

Imp
i,ref

(2)

Since both distributions are essentially similar except for the
dimming factor, we suggest that such a ratio is efficient enough
to retrieve αi reliably forming a baseline against which the neural
network models are compared. The efficiency of the baseline in
recovering the dimming factor is then evaluated according to the
success rate metric and the results for all channels are tabulated
in Table 2.

5. Results and Discussions

5.1. Comparing the performances of the baseline model with
different CNN architectures

The results of the learning algorithm are binarized using five dif-
ferent thresholds: the absolute value of 0.05 and relative values
of 5%, 10%, 15%, and 20%. If the absolute difference of the
predicted degradation factor (αP) and the ground truth degrada-
tion factor (αGT ) is smaller than the threshold, it is considered a
success αP; otherwise, it is not a success. We then evaluate the
binarized results by using the success rate, which is the ratio of
success αP and total amount of αP. We chose different success
rate thresholds to gauge model, all of which are smaller than the
uncertainty of the AIA calibration (estimated as 28% by Boerner
et al. 2012).

The baseline, single-channel, and multi-channel model re-
sults are summarized in Table 2. The different colors are for dif-
ferent success rates: green is for success rates greater than 90%,
yellow for success rate between 80% and 90%, and red is for
success rate lower than 80%.

A detailed look at Table 2 reveals that for an absolute tol-
erance value of 0.05, the best results for the baseline are 86%
(304 Å) and 76% (131 Å), and a mean success rate of ∼ 51%
across all channels. As we increase the relative tolerance levels,
the mean success rate increases from 27% (for 5% relative tol-
erance) to 66% (with 20% relative tolerance) and with a 39%
success rate in the worst performing channel (211 Å).

Investigating the performance of the CNN architecture with
a single input channel and an absolute tolerance level of 0.05, we
find that this model performed significantly better than our base-
line with much higher values of the metric, for all the channels.
The most significant improvement was shown by the 94 Å chan-
nel with an increase from 32% in the baseline model to about
70% in the single input CNN model, with an absolute tolerance
of 0.05. The average success rate bumped from 51% in the base-
line to 78% in the single-channel model. The worst metric for
the single-channel CNN architecture was recorded by the 211 Å
channel, with a success rate of just 63%, which is still signif-
icantly better than its baseline counterpart (31%). Furthermore,
with a relative tolerance value of 15%, we find that the mean suc-
cess rate is 85% for the single-channel model, which increases
to more than 90% for a 20% tolerance level. This is a promising
result considering the fact that the errors associated with the cur-
rent state-of-the-art calibration techniques (sounding rockets) is
∼ 25%.

Finally, we report the results from the multi-channel CNN
architecture in the last section of Table 2. As expected, the per-
formance in this case is the best of the models with significant
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Fig. 5. Graphic of the evolution of training and testing MSE loss through
the epochs.

improvements for almost all the EUV channels. Clearly, the suc-
cess rates belonging to the red category is much lesser compared
to the former models implying that the mean success rate is the
highest across all tolerance levels. The multi-channel architec-
ture recovers the degradation (dimming) factor for all channels
with a success rate of at least 91% for a relative tolerance level
of 20% and a mean success rate of ∼ 94%. It is also evident
that this model outperforms the baseline and the single-channel
model for all levels of relative tolerances. For any given level
of tolerance the mean across all channels increased significantly,
for example with absolute tolerance of 0.05 the mean increase
from 78% to 85%, even changing its color classification. In ad-
dition, the success rate is consistently the worst for 335 Å and
211 Å channels across all tolerances, whereas the performance
of the 131 Å channel is the best.

Looking at specific channels we can see that 304 Å does
consistently well through all the models with not much variation,
which wasn’t expected. Now observing 171 Å, it does well in the
baseline and in the multi-channel model but surprisingly it has its
maximum performance in the single-channel model, through all
tolerances, and a remarkable 94% success rate with a tolerance
of 0.05. In opposite to 171 Å, channels 211 Å and 335 Å have a
poor performance in the baseline and the single-channel models,
and they have a significant improvement in the multi-channel
model as expected and hypothesised by this paper.

Observing the Fig.5, we can see the training and test MSE
loss curve evolving by epoch. Based on the results from the Ta-
ble 2 and comparing the training and test loss curves in Fig. 5
we can see the model does not heavily overfit in the range of
epochs utilised and it presents stable generalization performance
on test results. We stopped the training before epoch 1000, see-
ing only marginal improvements achieved in the test set over
many epochs.

Overall the result shows higher success rates for the CNN
models, particularly for the multi-channel model, which was pre-
dicted by the toy problem, and for higher tolerances.

5.2. Modelling Channel Degradation over Time

In this section we discuss the results obtained when comparing
the AIA degradation curves V8 and V9, with both single-channel
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Table 2. Results of the baseline and CNN models applied to all the EUV AIA channels. The Table is divided in three sections: Baseline, Single-
Channel and Multi-Channel model. From left, the channel number, the success rates for the baseline, the success rates for the single-channel CNN
model, and the success rates, for the multi-channel CNN model, each model performance is considered at different tolerance levels. At the bottom,
the mean of the success rate across all the channels. Color green is for success rates greater than 90%, yellow for success rate between 80% and
90% and red is for success rate lower than 80%.

Channel Baseline Single-Channel Model Multi-Channel Model

0.05 5% 10% 15% 20% 0.05 5% 10% 15% 20% 0.05 5% 10% 15% 20%

94 Å 32% 08% 18% 28% 40% 70% 37% 61% 78% 87% 82% 48% 73% 85% 92%
131 Å 76% 50% 73% 86% 96% 94% 72% 92% 98% 99% 99% 76% 94% 97% 99%
171 Å 58% 27% 48% 66% 85% 93% 70% 93% 97% 99% 84% 48% 72% 86% 93%
193 Å 38% 13% 27% 44% 53% 73% 41% 69% 85% 93% 90% 59% 85% 94% 98%
211 Å 31% 11% 21% 29% 39% 63% 30% 53% 71% 84% 76% 41% 68% 82% 92%
304 Å 86% 66% 89% 95% 100% 90% 65% 89% 97% 99% 94% 62% 86% 93% 96%
335 Å 38% 13% 29% 42% 51% 62% 31% 54% 69% 80% 73% 39% 65% 82% 91%
Mean 51% 27% 43% 56% 66% 78% 50% 73% 85% 92% 85% 53% 77% 89% 94%

and multi-channel CNN models. This process was performed us-
ing a dataset equivalent to the SDOML but with no correction for
degradation and data period from 2010 to 2020. This tests both
models for real degradation suffered by AIA from 2010 to 2020.

Figure 6 presents the results of our analysis for all the seven
AIA EUV channels. In each panel, we show four quantities:
the degradation curve V9 (solid black line), the degradation
curve V8 (solid gray line), predicted degradation from the single-
channel model (dashed colorful line) and multi-channel model
(solid colorful line). The shaded gray band depicts the region
covering 25% variation (error) associated with the V9 degrada-
tion curve and the colorful shaded areas are the standard devia-
tion of the single- and multi-channel models. The dashed vertical
line coincides with the day (25 May 2014), the last day of EVE
MEGS-A instrument data. It is important to note that MEGS-
A was earlier used for the sounding rocket calibration purposes,
the loss of which caused both the V8 and V9 degradation curves
to become noisier in the future. Szenicer et al. (2019) used deep
learning to facilitate a virtual replacement for MEGS-A.

Observing the different panels of Fig. 6, we can see that even
though we trained both the single and multi-channel models with
the SDOML dataset that was produced and corrected using the
V8 degradation curve, both CNN models predict the degradation
curves for each channel quite accurately over time, except for
94 Å and 211 Å channel. However, the deviations of the pre-
dicted values for these two channels fall well within the 25%
variation of the V9 calibration curve. In fact, the CNN predic-
tions have even better agreement with V9 than the V8 calibra-
tion for most of the channels. That hints at the conclusion that
the CNN is picking up on some actual information that is per-
haps even more responsive to degradation than FISM. The latest
degradation curve (V9) was updated recently in July 2020 and
the change from V8 to V9 might have easily caused an impact
while training the models. Moreover, the more significant devia-
tion of 94 Å channel in the early stages of the mission is due the
fact we limited our degradation factor to be less than one.

From the predicted calibration curves computed from the
single- and multi-channel models, we see that they have a sig-
nificant overlap throughout the entire period of observation. The
single-channel model predictions however, have a more signif-
icant variation for channels 211 Å, 193 Å and 171 Å. For a
systematic evaluation and a comparison among the results of the
two models across channels, we calculated some goodness of fit
metrics and the results are shown in Table 3.

Table 3. Goodness of fit metrics for single-channel and multi-channel
models with reference to the V9 degradation curve. The first metric is
the Two-Sample Kolmogorov-Smirnov Test (KS), and second metric is
the Fast Dynamic Time Warping.

Channel Single-Channel Multi-Channel

KS DTW KS DTW

94 Å 0.485 7.120 0.568 9.624
131 Å 0.346 2.711 0.275 1.624
171 Å 0.298 3.074 0.329 3.549
193 Å 0.211 1.829 0.244 2.080
211 Å 0.305 2.850 0.242 2.807
304 Å 0.282 1.412 0.100 1.311
335 Å 0.212 2.539 0.141 2.839

Table 3 contains two different metrics for evaluating the
goodness of fit of each CNN model with the V9 degradation
curve. The first is the Two-Sample Kolmogorov–Smirnov Test
(KS), which determines whether two samples come from the
same distribution (Massey Jr. 1951), and the null hypothesis as-
sumes that the two distributions are identical. The KS test has
the advantage that the distribution of statistic does not depend on
cumulative distribution function being tested. The second metric
is the Fast Dynamic Time Warping (DTW, Salvador & Chan
2007), which measures the similarity between two temporal se-
quences that may not be of the same length. This last one is im-
portant since statistical methods can be too sensitive when com-
paring two time series. DTW has distance between the series as
an output, and as a reference the DTW for the different EUV
channels between the V8 and V9 degradation curves are: 94 Å-
72.17, 131 Å- 13.03, 171 Å-9.82, 193 Å-30.05, 211 Å-16.86,
304 Å-7.02 and 335 Å-5.69.

Similar to Fig. 6 we find in Table 3, that the predictions from
both the single-channel and multi-channel models overlap sig-
nificantly both in terms of the metric and the time evolution.
Except for the 94 Å channel, all others have very close metric
values, well within a given level of tolerance. A low value of the
KS test metric suggests that the predictions have a similar distri-
bution as the observed V9 calibration curve which also indicates
the robustness of our CNN architecture. KS test agrees well with
DTW, where the values obtained are smaller to the reference val-
ues (as indicated earlier) between the V8 and the V9 calibration
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Fig. 6. Channels degradation over Time. From top to bottom: Channel 94 Å (blue) and 131 Å (yellow), 171Å (green) and 193 Å (red), 211 Å (pur-
ple) and 304 Å (brown) and 335 Å (magenta). The solid black (gray) curve is the degradation profile of AIA calibration release V9 (V8). The gray
shaded area correspond to the 25% error of the degradation curve V9. The colorful shaded areas are the standard deviation of the CNN models.
The vertical black dashed line is the last available observation from EVE MEGS-A data and the vertical gray dashed line is the last training date.
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curves. Overall, the metric analysis for the goodness of fit be-
tween the predictions and the actual calibration curve (V9) show
that the CNN models perform remarkably well in predicting the
degradation curves despite being trained only on the first three
years of the observations.

5.3. Feature Maps
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Fig. 7. Feature maps obtained from the last layer of CNN of our model.
Top row shows a sample input in AIA 193 Å channel, and the bot-
tom row shows four representative feature maps out of one hundred and
twenty eight different feature maps from the final convolutional layer of
the multi-channel NN model.

As mentioned in Sect. 3.5, the feature maps are the result of
applying the filters to an input image. That is, at each layer, the
feature map is the output of that layer. In Fig. 7 we present such
maps obtained from the output of the last convolutional layer of
our CNN. The top row shows a reference input image observed
at 193 Å used in this analysis, with its intensity scaled between
0 − 1 pixel units, and the bottom row shows 4 representative
feature maps (out of a total of 128) with their corresponding
weights. These maps are obtained after the final convolutional
layer of the multi-channel model and it represents the result of
combining all seven EUV channels as input. The predicted α
dimming factors from the model are given by the sigmoid acti-
vation function applied to a linear combination of these features.
Such mapping allows us to see that the network actually learned
to identify the different features of such full-disk solar images
such as the limb, the quiet Sun features, and the ARs. The reason
for visualising a feature map for specific AIA images is to gain
an understanding of what features a model detects are ultimately
useful in recovering the degradation or the dimming factors.

6. Concluding remarks

This paper reports a novel ML-based approach to auto-
calibration and advances our comprehension of the cross-

channel relationship among different EUV channels by introduc-
ing a robust novel method to correct for the EUV instrument time
degradation. We began with formulating the problem and setting
up a toy model to test our hypothesis. We then established two
CNN architectures that consider multiple wavelengths as input
to auto-correct for on-orbit degradation of the AIA instrument
on board SDO. We trained the models using SDOML dataset,
and further augmented the training set by randomly degrading
images at each epoch. This approach made sure that the CNN
model generalizes well to data not seen during the training, and
we also developed a non-ML baseline to test and to compare
its performance with the CNN models. With the best trained
CNN models, we reconstructed the AIA multi-channel degra-
dation curves of 2010-2020 and compared with the sounding-
rocket based degradation curves V8 and V9.

Our results indicate that the CNN models significantly out-
perform the non-ML baseline model (85% vs. 51% in terms of
the success rate metric), for a tolerance level of 0.05. In addi-
tion, the multi-channel CNN also outperforms the single-channel
CNN with 78% success rate with absolute 0.05 threshold. This
result is consistent with the expectation that correlations between
structures in different channels, and size (morphology) of struc-
tures and brightness can be used to compensate for the degra-
dation. To further understand the correlation between different
channels, we used the concept of feature maps to shed light over
this aspect and see how the filters of the CNNs were being ac-
tivated. We did see that the CNNs learned representations that
make use of the different features within solar images but further
work needs to be done in this aspect to establish a more detailed
interpretation.

We also found that the CNN models reproduce the most
recent sounding-rocket based degradation curves (V8 and V9)
very closely and within their uncertainty levels. This is particu-
larly promising, given that no time information has been used in
training the models. For some specific channels, like 335 Å, the
model is reproducing the V8 curve instead V9, since the SDOML
was corrected using the former. The single-channel model could
perform as well as the multi-channel model even though the
multi-channel presented a more robust performance when eval-
uated on the basis of their success rates.

Lastly, this paper presents a unique possibility of auto-
calibrating deep space missions such as the one on-board the
STEREO spacecraft that are too far away from Earth to be cali-
brated using sounding-rockets. The auto-calibration model could
be trained using the first months of data from the mission, assum-
ing the instrument is calibrated at the beginning of the mission.
The data volume could be an issue, and different types of data
augmentation could be used to overcome this problem, such as
synthetic degradation and image rotation. We also envision that
the technique presented here may also be adapted to imaging in-
struments or spectrographs operating at other wavelengths (e.g.,
hyperspectral Earth-oriented imagers) observed from different
space-based instruments like IRIS (De Pontieu et al. 2014).
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Appendix A: Scaling Units for each AIA channel

Table A.1. Table of the scaling units of AIA channels.

AIA channel (Å) Scaling unit [DN/s/pixel]

94 10
131 80
171 2000
193 3000
211 1000
304 500
335 80

Appendix B: Detailed model Architectures

Table B.1 and B.2 presents the more detailed information of the
CNN architecture. From left to right, they show the layer num-
ber, the type of layer, the output shape of each layer, and the
learnable parameters each layer has. During the training process,
the model works to learn and optimize the weights and biases in
a neural network. These weights and biases are indeed the learn-
able parameters. In fact, any parameters within our model that
are learned/updated during the training process is a learnable pa-
rameter.

Table B.1. The detailed single channel architecture. From left to right
columns we have the layer number, layer type, output shape and the to-
tal number of learnable parameters of the layer. The architecture is com-
posed of two blocks of a convolutional layer, ReLU activation function
and max pooling layer followed by a fully connected (FC) layer and a
final sigmoid activation function.

# Layer Output Shape Learnable Parameters
1 Input [1, 256, 256] 0
2 Convolution [64, 254, 254] 640
3 ReLU [64, 254, 254] 0
4 MaxPooling [64, 84, 84] 0
5 Convolution [128, 82, 82] 73,856
6 ReLU [128, 82, 82] 0
7 MaxPooling [128, 27, 27] 0
8 Fully Connected [1] 93,313
9 Sigmoid [1] 2

Total Learnable Parameters 167,809

Learnable parameters are calculated differently for each
layer. For convolutional layers we use equation B.1

((H ×W × f ) + 1) × k) (B.1)

where H is the height of the input, W is the width, f is the num-
ber of filters from the previous layer, 1 is the bias, and k is the
number of filters in the convolution. For the fully connected lay-
ers and sigmoids, we use the equation B.2

((C × P) + 1 × c) (B.2)

where C is the number of current layer neurons, P is the number
of previous layers neurons, and 1 is the bias. ReLU and max-
pooling layers have zero learnable parameters since they do not
have weights to be updated as the neural network is trained.

Table B.2. The detailed multi-channel architecture. From left to right
columns we have the layer number, layer type, output shape and the to-
tal number of learnable parameters of the layer. The architecture is com-
posed of two blocks of a convolutional layer, ReLU activation function
and max pooling layer followed by a fully connected (FC) layer and a
final sigmoid activation function.

# Layer Output Shape Learnable Parameters
1 Input [7, 256, 256] 0
2 Convolution [64, 254, 254] 4,096
3 ReLU [64, 254, 254] 0
4 MaxPooling [64, 84, 84] 0
5 Convolution [128, 82, 82] 73,856
6 ReLU [128, 82, 82] 0
7 MaxPooling [128, 27, 27] 0
8 Fully Connected [7] 653,191
9 Sigmoid [7] 56

Total Learnable Parameters 731,143
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