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Abstract

It is well known that deep generative models have a rich
latent space, and that it is possible to smoothly manipu-
late their outputs by traversing this latent space. Recently,
architectures have emerged that allow for more complex
manipulations, such as making an image look as though
it were from a different class, or painted in a certain style.
These methods typically require large amounts of training in
order to learn a single class of manipulations. We present
Transflow Learning, a method for transforming a pre-trained
generative model so that its outputs more closely resemble
data that we provide afterwards. In contrast to previous
methods, Transflow Learning does not require any training
at all, and instead warps the probability distribution from
which we sample latent vectors using Bayesian inference.
Transflow Learning can be used to solve a wide variety of
tasks, such as neural style transfer and few-shot classifica-
tion.

1. Introduction
One of the greatest challenges in modern machine learn-

ing is few-shot learning [13, 14]. Whereas a human is capa-
ble of learning a task such as handwritten digit recognition
after only having seen a few samples of each digit, even
simple machine learning classifiers require training multiple
epochs over a relatively large dataset. When it comes to
more complicated tasks, machine learning algorithms be-
come even more data-hungry—whereas humans can learn
to play Atari games in a matter of minutes, even the most
sample-efficient of reinforcement learning algorithms take
hundreds of hours of gameplay [24].

What advantages do humans have over machines that
allows us to consistently beat them with regards to sample
efficiency? One might argue that humans are constantly uti-
lizing their experiences in other domains in order to draw par-
allels between tasks. Even when it comes to very disparate
sets of tasks, such as “natural language understanding" and
“video game playing," studies have shown that it is possible
to transfer knowledge between these domains for major sam-

Figure 1: Transflow Learning allows us to warp the latent
distribution of any trained invertible generative model, so
that we can instead sample data similar to that we provide
post-hoc. This works by treating the latent distribution as
the prior in a Bayesian posterior inference setting where we
condition on the provided data. In this example, given only
18–24 instances of images in the art domains on the left, a
flow model trained on CelebA [17] is able to generate human
faces with matching attributes, even though these attributes
are not contained in the CelebA dataset.

ple efficiency gains in both machine learning algorithms and
human learning [24, 2]. The idea of taking knowledge from
one domain or task, and using that knowledge in another
domain, is known as “transfer learning” [20].

When attempting to transfer knowledge about one task to
another, two broad questions must be asked: how is the prior
knowledge from other tasks stored, and how can it be used?
We propose an answer to these questions in the context of
generative models.

Modern generative models, such as Generative Adversar-
ial Networks (GANs) [8], normalizing flow models [22], and
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autoregressive models such as Conditional PixelCNN [25]
differ in their learning mechanisms, but all share a common
thread: they learn a function fθ : Rd → Rd which trans-
forms samples of a latent random variable z ∼ q(z), where
z ∈ Rd and q(z) is a known distribution, to a data point
(e.g., an image) x ∈ Rd. The latent distribution q(z) is usu-
ally a simple distribution such as the multivariate Gaussian,
N (~0, I). When learning generative models we keep q(z)
fixed, and concentrate all of our efforts on optimizing the
parameters θ.

In the context of above discussion on transfer learning,
however, we take a different view. We wish to transfer
knowledge from a trained generative model f , to some new
task. To be concrete, assume we have a generative model that
will output an arbitrary celebrity face when given a latent
vector z ∼ N (~0, I) as input. Can we use the same generative
model to only output celebrities with red hair? Can we output
a celebrity which looks like an anime character? Can we
even classify handwritten digits?

We find that all of the above and more is possible, with
the condition that our generative model f is invertible. That
is, we require an inverse function z = f−1(x) which takes
a data point (e.g., an image) as input, and outputs the corre-
sponding latent vector. Normalizing flow models [21] are
the most natural class of such generative models, as they are
by nature invertible, unlike other architectures such as GANs
which can be inverted only under specific circumstances [5].

Our method works by taking the flow model and its pa-
rameters as fixed, and instead warping the latent distribution
so that we can control the latent vectors that we sample.
Specifically, we treat the latent distribution q(z) as a prior
distribution in a Bayesian inference setting where we update
it to a posterior q(z|ζ1:m) conditioned on some observed
data samples x1:m mapped to corresponding latent vectors
using ζi = f−1(xi), i = 1, . . . ,m. We call our method
Transflow Learning, as it uses flow models to perform tasks
for which they were not originally trained.

In Section 2 we cover some essential concepts, followed
by Section 3 where we describe the mechanism by which we
warp q(z): Bayesian inference in the latent space. Section
4 covers related work. In Section 5, we provide example
use cases in which knowledge can be transferred, specifi-
cally modeling distributions other than the training data, and
solving downstream tasks. Section 6 discusses future work
followed by conclusions in Section 7.

2. Background

2.1. Normalizing Flow Models

A normalizing flow is a series of learned invertible trans-
formations which can transform one probability distribution
into another. If random variable z0 with associated prob-
ability density q0(z0) is put through a series of invertible

transformations {f1, ..., fK} so that

zK = fK ◦ ... ◦ f1(z0) = f(z0) (1)

then we have

qK(zK) = q0(z0)

K∏
k=1

∣∣∣∣det
∂fk
∂zk−1

∣∣∣∣−1

. (2)

Each fk contains learnable parameters, which are typ-
ically learned by maximum likelihood. The flow is “nor-
malizing" because each qk(zk) defines a valid probability
distribution [22].

In this paper we designate z = z0 as the latent vector and
x = zK as the data point produced by the transformation
x = f(z). We require two properties of flow models: that f
is invertible (which is true as it is the composition of invert-
ible functions), and that vectors around f−1(x) correspond
to data close to x, even for x that the flow model had not
seen during training (which holds empirically as long as x is
not extremely unnatural).

2.2. Posterior Inference

Bayesian inference is a powerful tool for reasoning about
probability distributions [7]. Core to the idea of Bayesian
inference are the concepts of the prior, which is a proba-
bility distribution p(z) that we assume exists before having
seen any data, and the posterior, which is a probability dis-
tribution p(z|x) that we obtain after having observed some
data (or evidence) x with a likelihood p(x|z). These are re-
lated with the relationship p(z|x) = p(x|z) p(z)/p(x). The
likelihood is essentially a weighting that tells us to what
degree the prior must be moved after having observed some
evidence.

Also important is the concept of a conjugate prior [23],
which means that with certain choices of prior and likelihood
distributions, we can ensure that we have a closed-form ana-
lytical expression for the posterior distribution. In particular,
we will need to use the fact that if we have a prior which
is a multivariate Gaussian and a likelihood function which
is a multivariate Gaussian with a known covariance matrix,
then the posterior is also guaranteed to be a multivariate
Gaussian.

Using knowledge of conjugate distributions is particu-
larly attractive, as it will allow us to solve for the posterior
parameters analytically. Without a certain specification of
likelihood function, we would need to resort to sampling-
based methods such as stochastic variational inference [10]
in order to obtain an approximation to the posterior.

3. Algorithm
Our algorithm is detailed in Algorithm 1. The key insight

is to treat the underlying latent distribution q(z) of a flow



Algorithm 1 Transflow Learning

1: Input: Trained flow model x = f(z) with inverse z =
f−1(x), where x are data and z are latents

2: For each set of evidence data x1:m, find corresponding
latents {ζ1, ..., ζm} = {f−1(x1), ..., f−1(xm)}

3: Construct posterior q(z|ζ1:m) = N (µp,Σp) by com-
puting µp and Σp analytically

4: Obtain samples from the data posterior p(x|x1:m) by
computing x = f(z) where z ∼ q(z|ζ1:m)

λ = 0.3m λ = 0.7m

Figure 2: Transflow Learning finds a posterior (top right)
in between the prior (bottom left) and the evidence (cross
mark). We see that as λ becomes larger, the mean of the
posterior becomes closer to the mean of the prior, and the
covariance of the posterior becomes larger, but in both cases
the evidence can be sampled with relatively high probability.

model as a prior, where usually q(z) = N (~0, I). We are
then interested in obtaining a posterior over the latent space
of the flow model q(z|ζ1:m), conditioned on ζi, which are
some data observations xi mapped to the latent space using
ζi = f−1(xi), i = 1, . . . ,m.

In other words, we provide evidence in the form of new
latent vectors and, conditioned on this evidence, we find a
posterior distribution over the flow model’s latent variables.
This effectively gives us a new generative model from which
we can sample data resembling the evidence. In order to
accomplish this, we require our generative model f to be
invertible.

3.1. Computing the Posterior over Latent Vectors

As most implementations of normalizing flow models use
a multivariate Gaussian to model q(z), with an appropriate
choice of likelihood function we can compute the posterior
analytically. Assume we are given a trained flow model, and
that during training the model was shown latent vectors from
z ∼ N (~0, I). If we use a multivariate Gaussian likelihood
function with covariance matrix Σ, then the posterior over
the latent vectors is also a multivariate Gaussian, so that
q(z|ζ1:m) = N (µp,Σp), and its parameters are given by

the formulae:

µp = (Σ−1
0 +mΣ−1)−1(Σ−1

0 µ0 +mΣ−1ζ̄) (3)

Σp = (Σ−1
0 +mΣ−1)−1 (4)

where m is the number of observed data points, ζ̄ is the
mean of observed latent vectors ζ1:m, µ0 is the prior mean
and Σ0 is the prior covariance matrix. As we know that µ0

is equal to ~0 and Σ0 is the identity matrix, we can further
simplify these formulae:

µp = (I +mΣ−1)−1(mΣ−1ζ̄) (5)

Σp = (I +mΣ−1)−1 (6)

The choice of Σ here serves as a hyperparameter. One
natural choice would be to use a scalar matrix, which implies
that we would like to keep the latent vectors uncorrelated and
weighted identically. With likelihood covariance Σ being
set to λI , with λ a scaling hyperparameter, the posterior
parameters become simple to compute:

µp = (I +
m

λ
I)−1(

m

λ
I ζ̄) =

m
λ ζ̄

m
λ + 1

(7)

Σp = (I +
m

λ
I)−1 =

1
m
λ + 1

I (8)

There are three special cases that we can examine:

1. If we let λ = c, where c is a small constant relative
to m, we can see that the mean of the posterior will
be close to the sample mean, and the covariance of the
posterior will be very small.

2. If we let λ = m, we can see that the mean of the
posterior will be locked onto 0.5ζ̄, and the covariance
will remain constant at 0.5I , regardless the value of m.

3. If we let λ become arbitrarily large, then the posterior
mean will be close to ~0 and the posterior covariance
will be close to I , i.e., all conditioning is completely
ignored and we get back the original flow model.

In other words, low values of λ relative to m will give a
posterior that is close to the sample mean, and with very low
covariance, whereas high values of λ will become more and
more like the original flow model.

3.2. Computing the Posterior Predictive Distribu-
tion

The posterior predictive distribution evaluates the prob-
ability of a possible unobserved value ζ of latent vectors
conditioned on the observed values ζ1:m. It is obtained
by marginalizing the distribution of ζ over the posterior
q(z|ζ1:m):

q(ζ|ζ1:m) =

∫
p(ζ|z, ζ1:m) q(z|ζ1:m) dz (9)



In the setting of multivariate Gaussian conjugate priors
that we described in the previous section, its form is known
and easily calculated:

µpp = µp =
m
λ ζ̄

m
λ + 1

(10)

Σpp = Σp + Σ =
1

m
λ + 1

I + λI (11)

Its mean is exactly the same as that of the posterior, and
its covariance is also identical, save for the extra λI term,
which accounts for uncertainty in the parameters. We can
use the posterior predictive distribution for a wide variety of
tasks unrelated to sampling, and in Section 5.3 we will show
how to do MNIST [15] classification without training.

3.3. Properly Setting λ

The hyperparameter λ determines the variance of the
likelihood that is used in the conditioning on observed data
points. This is similar to the use of approximate Bayesian
computation [19, 26] likelihoods in Bayesian inverse graph-
ics [18], where the variance of the likelihood plays the role of
a “tolerance” in judging how closely an image generated by
the generative model matches an observed image. High toler-
ances admit generation of images that do not closely match
the observation, whereas low tolerances push inference to-
wards closely mimicking the observation while reducing the
sample efficiency in complex image settings.

From the perspective of the analytical posteriors intro-
duced in Section 3.1, while setting λ to a high value may
seem like a mistake due to the behaviour of the posterior as
λ grows larger, we argue that low values of λ are even more
dangerous. As flow models learn invertible maps, the dimen-
sionality of the latent vectors must be equal to that of the
output. For example, if we wish to output full-colour, 256
by 256 images, then the dimensionality of the latent space is
3× 256× 256 = 196, 608. In contrast, the dimensionality
of the latent space for a typical GAN [8] or VAE [12], which
do not have this restriction, is around 100.

The high dimensionality of flow model latent vectors
implies that vectors which should be “close" in that they
share similar features in image space will be very far in the
L2 sense. This has implications for the sample mean of
latent vectors, ζ̄, which will have a smaller L2 norm as more
observed data points are averaged, due to the curse of dimen-
sionality spreading supposedly “similar" vectors in different
directions relative to the origin. As vectors with smaller
norm are closer to the mean of Gaussian on which the flow
model was trained, ~0, this has the effect that conditioning on
many data points will give a posterior mean which is very
“generic," as it has unreasonably high probability under the
original model (i.e., much higher probability than a vector
randomly sampled from N (~0, I)). While this is not bad in

and of itself (after all, the mean of the original distribution,
~0, is the most generic image possible), this issue is further
compounded by the covariance of the posterior shrinking as
more data points are added, making it so that if λ is set too
low, every sample from the distribution is extremely generic.
Even though the mean of the posterior distribution has even
smaller norm with larger values of λ, the larger covariance
makes up for it.

In practice we find that a large range of settings of λ work,
depending on the nature of the conditioning, but in general
values which are in the range [0.3m, 0.7m] are preferable.
We explore the consequences of different choices of λ in
Section 5.

4. Related Work
Image2StyleGAN [1] explored interpolations and em-

beddings of real images into the latent space of a GAN
[8]. They found that while able to embed natural images
almost perfectly, including those out of the distribution on
which the GAN was trained, they were unable to do sen-
sible latent space interpolations. Our method is able to do
sensible interpolations between out-of-distribution datasets
by interpolating the mean and covariance of their posterior
distributions as we show in Figure 3. This method can be
thought of as first projecting the out-of-distribution images
onto the flow model manifold before interpolating.

Neural Style Transfer [6] is a method for re-rendering
images with a different style, while also keeping the content
similar. Our method can be seen as similar to Neural Style
Transfer methods, with the “content" being provided by the
flow model and the “style" being provided by the evidence.
Unlike previous Neural Style Transfer methods which work
on a single content image, we learn an entire distribution
from which we can sample.

CycleGAN [27] and Few-Shot Unsupervised Image-to-
Image Translation [16] are also methods for blending two
unpaired datasets, but the aim is slightly different. Whereas
these methods are capable of turning one specific image into
that resembling a different class, we are able to generate
many diverse samples of the class given as evidence. At the
same time, our method would be unable to modify a single
image in a meaningful way.

Glow [11] explored the use of manipulation vectors in
order to induce specific attributes in images. Whereas their
simple algebraic method required both positive and negative
examples of the attribute they wished to express, we require
only positive examples. We also obtain a full posterior dis-
tribution from which we can sample many diverse images,
unlike their method which can only transform a single image.

The common thread between our work and previous
works is that while many previous works showed manipula-
tions of individual images using trained generative models,
we are the first to combine pre-trained generative models
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Figure 3: Interpolation between two sets of images far outside the training distribution, by first projecting onto the manifold of
human faces, and then interpolating the parameters of the posterior distributions. Note that as the distribution gets closer to
that of Rembrandt’s self-portraits, the colours in the image get darker, men are sampled much more frequently, the hair is often
gone from the samples (as Rembrandt often wore a hat which blended in with the background), and the sampled faces are
more tilted towards the right. (View in numerical or reverse numerical order)

Figure 4: Direct interpolation between two images from the same dataset as in Figure 3. Note that many intermediate images
are not faces.

with new data to create an entirely new generative model.

5. Experiments
While there are many different types of flow models such

as NICE [3], Real NVP [4], and Flow++ [9], we chose to
use Glow [11] for all of our experiments. This is an arbitrary
choice mainly influenced by the public availability of a pre-
trained model for Glow, trained on the CelebA dataset [17].
Flow models are currently prohibitively difficult to train,
both in terms of time and compute requirements, and this
study is solely interested in exploring transfer learning using
existing models.

5.1. In-distribution Conditioning

A simple experiment to demonstrate the capabilities of
Transflow Learning is to sample from some coherent subset

of data within the CelebA dataset, such as people with red
hair, people with glasses, or individual people. We found
that for categories which are strict subsets of the training
data, such as people with red hair, we could create a reason-
able posterior distribution with both a low amount of data
and a wide range of λ. In Figure 5 we show results from
Transflow Learning given 5 images of people with red hair,
a distribution which is wholly a subset of CelebA, and 21
images of greyscale human faces, a distribution which is not
represented in the CelebA training set, but is also not too far
off.

We also attempted to condition on natural faces with a
large occlusion, and were surprised by the results. Figure 6
shows results when attemping to condition Glow on 25 im-
ages of President Obama with a large occlusion over his
eyes. Transflow Learning was shockingly able to gener-



Figure 5: A flow model trained on CelebA, conditioned on
relatively natural images. The images of people with red hair
(left) are sampled from a posterior using only five images as
evidence, showing that our model is very sample-efficient for
strict subsets of the CelebA distribution. Greyscale images
(right), despite not appearing in the CelebA training set, were
also successfully captured by a Transflow Learning posterior.

ate images of men with a neon-green occlusion over their
eyes, despite similar images clearly not being located in
the CelebA training set. It is important to reemphasize at
this point that Transflow Learning in no way modifies the
flow model—amazingly, there was simply a region in the
Glow latent space in which latent vectors corresponding to
these images exist, and Transflow Learning was able to find
a Gaussian covering this space. As the posterior contains
elements of both the prior and the evidence, we expected the
posterior to perform similar to inpainting, and were surprised
to learn that the latent space of Glow was rich enough to be
able to generate these images which were far outside of the
training set. We only observed an inpainting-like effect for
relatively high values of λ (i.e., values close to m), but at
that point the model had forgotten to also generate President
Obama, and was generating seemingly random samples with
a faint, translucent occlusion around the eyes.

Even more surprisingly, when we changed the occlusion
so that it would be made up of random pixels as opposed to
one solid colour, Transflow Learning was no longer able to
generate human faces, even for relatively high values of λ.
We believe that this effect is due to how unlikely the noisy
occlusion is compared to the monochromatic occlusion. We
found that latent vectors corresponding to a real image of
President Obama, the same image of President Obama with
a monochromatic occlusion, and an image of an anime char-
acter have the log-likelihoods of -284,462, -281,377, and
-285,610 respectively. Notably, these are all contained in
roughly the same range, and the image of President Obama
with a monochromatic occlusion was actually more likely
than the image without the occlusion. Conversely, the latent
vector corresponding to an image of President Obama with a
noisy occlusion has a log-likelihood of -333,436, a number
which is completely off the charts. This effect pushes the
posterior too far out, to the point that samples around the

posterior mean no longer correspond to meaningful images.
Indeed, the pattern around the eyes in the posterior samples
also resemble patterns that appear for any image correspond-
ing to a latent vector with extremely high magnitude, which
are guaranteed to be unlikely.

5.2. Out-of-distribution Conditioning

We also found that Transflow Learning could generate
samples of many types of images which are not strictly hu-
man faces. While generated images were often nonsensical
when conditioned on images which could not be interpreted
in any way as a face, we found that a wide variety of images,
such as cartoon faces or paintings of faces, gave interesting
results. In Figure 8 we show two examples of such a con-
ditioning, on self-portraits of Rembrandt and images of an
anime character.1

We found that the setting of λ was much more difficult in
out-of-distribution scenarios. While with in-distribution con-
ditioning we could freely set λ to any reasonable value and
achieve sensible (although different) results, many settings
of λ for out-of-distribution conditioning created distributions
that were either too narrow or too much like the original flow
model.

The CelebA dataset [17] is also strongly aligned, which
created difficulty in conditioning on out-of-distribution
datasets. We found that even for datasets that could be inter-
preted as human faces, sample quality decreased sharply in
the presence of poorly aligned inputs. This posed particular
difficulty when conditioning on anime faces, as the facial
keypoint detector trained on human faces frequently mistook
anime mouths for noses and chins for mouths, or more often
failed to find a face at all.

While samples from the flow model are visually meaning-
less when evidence cannot be interpreted as a human face,
the learned posteriors can still be used for downstream tasks.
In the next section, we will show that Transflow Learning
can use a flow model trained on the CelebA dataset to do
MNIST classification in a low-shot setting.

5.3. MNIST Classification

In order to classify MNIST digits through transfer learn-
ing with a pre-trained flow model, we must use the posterior
predictive distribution given in Section 3.2. The workflow is
as follows:

1. Take a flow model pre-trained on any dataset

2. Compute posterior predictive distributions conditioned
on a number of observations from each class in MNIST,
obtaining ten separate distributions

1Anime character images taken from the Anime Face Char-
acter Dataset: http://www.nurs.or.jp/~nagadomi/
animeface-character-dataset/

http://www.nurs.or.jp/~nagadomi/animeface-character-dataset/
http://www.nurs.or.jp/~nagadomi/animeface-character-dataset/


(a) (b) (c) (d)

Figure 6: Even when providing Transflow learning with evidence that is far outside of the distribution on which the flow
model is originally trained (a), we are able to learn a sensible posterior distribution (b). Evidence that is so unlikely that it
could not have come from a natural image (c), however, causes the posterior mean to be too far from the mean of the original
distribution, and output samples (d) are no longer meaningful, even for high values of λ.

Evidence λ = 0.2m λ = 0.4m λ = 0.6m λ = 0.8m λ = m

Figure 7: Varying the λ hyperparameter for a greyscale dataset. λ that is low creates images resembling pencil sketches,
whereas λ that is high creates images with very subdued colors.

3. When given an image of a new digit x, compute the
probability of f−1(x) under each of the ten posterior
predictive distributions

4. The new image x is classified as having come from the
posterior predictive distribution under which it was the
most likely

We compared Transflow Learning to k-nearest neighbors
in both pixel and the flow model latent space on the task
of m-shot MNIST classification. Our results are located in
Table 1. We wish to emphasize that unlike previous methods
using generative models for few-shot learning, we did not
pre-train our flow model on the MNIST training set. For
each experiment, we used the same implementation of Glow
trained on CelebA and then showed each algorithm only m
labeled images from each class in the MNIST training set.

It is also important to emphasize that no “training" in the
traditional sense is done here whatsoever. In the Transflow
Learning experiments, the labeled MNIST images are sim-
ply used to warp the latent distribution of the CelebA flow
model (Figure 9). This has implications for transfer learn-
ing using large datasets as conditioning, as for a dataset of
size n, we would only require n evaluations of the function

m Ours Pixel k-NN Latent k-NN
1 30.39% 14.99% 27.78%
5 46.39% 32.99% 35.10%

10 58.73% 19.50% 40.40%
20 65.35% 22.83% 44.12%
30 69.52% 20.55% 47.58%

Table 1: Accuracy on single-shot and few-shot MNIST clas-
sification, given a flow model trained on CelebA. For all
k-Nearest Neighbors experiments, k was set to 3 when pos-
sible, otherwise 1.

from data to latent variables, f−1, in order to obtain a new
classifier. Compared to the common practice of gradient-
based fine-tuning of models with new training data, which
requires several epochs of both costly forward and backward
propagations, our method is exceptionally cheap in terms of
number of function evaluations required.



Evidence λ = 0.1m λ = 0.4m λ = 0.7m λ = m

Figure 8: Varying the λ hyperparameter for different out-of-distribution conditioning datasets. λ that is too low creates samples
too close to the sample mean, whereas λ that is too high creates samples too close to those from the original distribution.

Figure 9: Samples from the posterior of a CelebA flow
model conditioned on MNIST, for m equal to 1, 5, and
30 respectively. For m equal to 1, the samples look very
similar to the evidence. As m is increased, sample quality
decreases due to the sample means becoming closer to ~0
(and therefore becoming more “humanlike"), but prediction
accuracy increases greatly.

6. Future Work

While flow models are the most natural choice to study
invertible generative models, it is also possible, albeit more
unwieldy, to find a mapping from data to latent vectors in
other generative models. One such example is the BiGAN
[5], which adds an extra term to the GAN objective in order
to learn this mapping. As our methods are not specific to
flow models in particular and only require the model to be in-
vertible, it would also be possible to do posterior inference in
the BiGAN latent space. As this latent space is several orders
of magnitude smaller than the flow model latent space, it is
very likely that posterior inference in a GAN’s latent space
would allow for a lower setting of the λ hyperparameter
and more finely-grained results. For instance, as the sample
mean would be much closer to that of a natural image than

the sample mean under a flow model, perhaps it would be
possible to give multiple images of a specific person as con-
ditioning, and generate new images of that person. At the
same time, perhaps the size of the flow model latent space
is contributing to the richness of samples that we are able to
generate, which is a question we would like to investigate in
future work.

Training generative models on very multimodal datasets,
such as videos complete with sound, is currently not feasible.
If, however, it were, we could use partial data (such as only
sound) as conditioning and then perform posterior inference
in the latent space. In this scenario, the flow model would
then possibly be able to generate plausible video that goes
with the sound given as conditioning. Given our experiments
with occluded faces, however, making this work may not be
a trivial task.

7. Conclusions

We have introduced Transflow Learning, a simple method
for doing transfer learning with invertible generative models.
We demonstrated the capabilities of our algorithm on several
generative modeling tasks, and even on downstream tasks
such as handwritten digit classification.

We look forward to future research developments in in-
vertible generative models, in particular developments in
making flow models less difficult to train. Such develop-
ments would be a boon to the applicability of Transflow
Learning, especially when being used for downstream tasks.
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