
2nd Symposium on Advances in Approximate Bayesian Inference, 2019 1–11

Efficient Bayesian Inference for Nested Simulators

Bradley Gram-Hansen bradley@robots.ox.ac.uk
Christian Schroeder de Witt cs@robots.ox.ac.uk
Robert Zinkov zinkov@robots.ox.ac.uk
University of Oxford

Saeid Naderiparizi saeidnp@cs.ubc.ca
Adam Scibior adam.scibior@inverted.ai
Andreas Munk andreas.m.m64@gmail.com
Mehrdad Ghadiri mehrdad29@gmail.com
Frank Wood fwood@cs.ubc.ca
University of British Columbia

Philip Torr philip.torr@eng.ox.ac.uk
Yee Whye Teh y.w.teh@stats.ox.ac.uk
Atilim Gunes Baydin gunes@robots.ox.ac.uk
Tom Rainforth rainforth@stats.ox.ac.uk
University of Oxford

Abstract
We introduce two approaches for conducting efficient Bayesian inference in stochastic sim-
ulators containing nested stochastic sub-procedures, i.e., internal procedures for which the
density cannot be calculated directly such as rejection sampling loops. The resulting class
of simulators are used extensively throughout the sciences and can be interpreted as prob-
abilistic generative models. However, drawing inferences from them poses a substantial
challenge due to the inability to evaluate even their unnormalised density, preventing the
use of many standard inference procedures like Markov Chain Monte Carlo (MCMC). To
address this, we introduce inference algorithms based on a two-step approach that first
approximates the conditional densities of the individual sub-procedures, before using these
approximations to run MCMC methods on the full program. Because the sub-procedures
can be dealt with separately and are lower-dimensional than that of the overall problem,
this two-step process allows them to be isolated and thus be tractably dealt with, with-
out placing restrictions on the overall dimensionality of the problem. We demonstrate the
utility of our approach on a simple, artificially constructed simulator.

1. Introduction and Background

Stochastic simulators are used in a myriad of scientific and industrial settings, such as
epidemiology (Patlolla et al., 2004), physics (Heermann, 1990), engineering (Hangos and
Cameron, 2001) and climate modelling (Held, 2005). They can be complex and high-
dimensional, often incorporating domain-specific expertise accumulated over many years
of research and development.

As shown by the probabilistic programming (Gordon et al., 2014; van de Meent et al.,
2018; Baydin et al., 2019) and approximate Bayesian computation (ABC) (Csilléry et al.,
2010; Marin et al., 2012) literatures, these simulators can be interpreted as probabilistic
generative models, implicitly defining a probability distribution over their internal variables

c© B. Gram-Hansen et al.

Efficient Bayesian Inference for Nested Simulators

and outputs. As such, they form valid targets for drawing Bayesian inferences. In particular,
by constraining selected internal variables or outputs to take on specific values, we implicitly
define a conditional distribution, or posterior, over the remaining variables. This effectively
allows us, amongst other things, to run the simulator in “reverse”, fixing the outputs to
some observed values and figuring out what parameter values might have led to them. For
example, given a simulator for visual scenes, we can run inference on the simulator with an
observed image to predict what objects are present in the scene (Kulkarni et al., 2015).

Though recent advances in probabilistic programming systems (PPSs, Tran et al. (2017);
Bingham et al. (2019); Baydin et al. (2019); Casado et al. (2017)) have provided convenient
mechanisms for encoding, reasoning about, and constructing inference algorithms for such
simulators, performing the necessary inference is still often extremely challenging, particu-
larly for complex or high-dimensional problems.

In this paper, we consider a scenario where this inference is particularly challenging
to perform: when the simulator makes calls to nested stochastic sub-procedures (NSSPs).
These NSSPs can take several different forms, such as internal rejection sampling loops,
separate inference procedures, external sub-simulators we have no control over, or even real-
world experiments. Their unifying common feature is that the density of their outputs cannot
be evaluated up to an input-independent normalising constant in closed form. This, in turn,
means the normalised density of the overall simulator cannot be evaluated, preventing one
from using most common inference methods, including almost all Markov chain Monte Carlo
(MCMC) and variational methods. Though some inference methods can still be applied in
these scenarios, such as nested importance sampling (Rainforth, 2018), these tend to scale
very poorly in the dimensionality and often even have fundamentally slower convergence
rates than standard Monte Carlo approaches (Rainforth et al., 2018).

To address this issue, we introduce two new approaches for performing inference in such
models. Both are based around approximating the individual NSSPs. The first approach
directly approximates the conditional density of the NSSP outputs using an amortized in-
ference artefact. This then forms a surrogate density for the NSSP, which, once trained, is
used to replace it.

While this first approach is generally applicable, our second approach focuses on the
specific case where the unnormalized density of the NSSP can be evaluated in isolation (such
as a nested probabilistic program or rejection sampling loop), but its normalizing constant
depends on the NSSP inputs. Here, we train a regressor to approximate the normalising
constant of the NSSP as a function of its inputs. Once learnt, this allows the NSSP to
be collapsed into the outer program: the ratio of the known unnormalised density and the
approximated normalizing constant can be directly used as a factor in the overall density.

Both approaches lead to an approximate version of the overall unnormalised density,
which can then be used as a target for conventional inference methods like MCMC and
variational inference. Because these approximations can be calculated separately for each
NSSP, this allows them to scale to higher dimensional overall simulators far more gracefully
than existing approaches, opening the door to tractably running inference for more complex
problems. Furthermore, once trained, the approximations can be reused for different datasets
and configurations of the outer simulator, thereby helping amortise the cost of running
multiple different inferences for no extra cost. The approaches themselves are also amenable
to automation, making them suitable candidates for PPS inference engines.

2

Efficient Bayesian Inference for Nested Simulators

2. Approximating Sub-Procedures

We now introduce our two approaches for approximating NSSPs and show how these, in
turn, produce efficient inference algorithms for the overall simulator. Both our approaches
involve the gradient-based learning of a neural-network-based amortised approximation for
each NSSP that takes in the NSSP inputs and either returns and approximation of the
density of the outputs (method 1) or the normalizing constant (method 2).

For any simulator or program, we can define the program density over valid program
traces x1:nx as (Rainforth, 2017, Section 4.3.2):

p(x1:nx) ∝ γ(x1:nx) =

nx∏
j=1

faj (xj |φj)
ny∏
k=1

gbk(yk|ψk) (1)

where nx is the length of the trace; each faj (xj |φj) represents the density of the jth random
draw, which is made at location aj and takes in parameters φj ; and ny is a number of “obser-
vations”, each of which factor the trace density by gbk(yk|ψk), where bk is the location of this
observation statement, yk is the observed value, and ψk are parameters of the factorization.
Here all terms—i.e., xj , nx, aj , φj , ny, bk, yk, and ψk—may be random variables, but each
is deterministically calculable from the trace x1:nx (see Rainforth (2017, Section 4.3.2))

A NSSP can now be formally defined as a faj (xj |φj) term which cannot be directly
evaluated exactly, but where for a given φj either [Case A] we can draw samples from
faj (xj |φj) directly and/or [Case B] faj (xj |φj) corresponds to the normalized density of a
nested probabilistic program that we can draw approximate samples from by running an sep-
arate inference procedure. Many simulators contain such sampling procedures (Di Pasquale
et al., 2015; Gleisberg et al., 2009; Smith et al., 2006; Heermann, 1990; Rainforth, 2018;
Baydin et al., 2019), and it is these simulators that we target with our inference schemes.

We can denote the unnormalized density for a program containing NSSPs as

γ(x1:nx) = Ppr(x1:nx)

ny∏
k=1

gbk(yk|ψk) (2)

where Ppr(x1:nx) : =
∏

{j∈1:nx|aj /∈Sr}

faj (xj |φj)
∏

{j∈1:nx|aj∈Sr}

P inaj (xj |φj) (3)

is a representation of the “forward” or “prior” program which ignores all conditioning state-
ments; Sr = {a1, . . . , an} represents the set of addresses that produce intractable densities;
and we use P inaj (xj |φj) to distinguish the NSSPs from tractable sampling terms. Both our
methods are now based on replacing each of the P inaj (xj |φj) with an approximation, for which
we only need to consider the prior program. Once learned, these can then be used to con-
struct a directly evaluable approximate target density γ̂(x1:nx) by replacing each P inaj (xj |φj)
in (3), then running an MCMC sampler on γ̂(x1:nx).

2.1. Method 1: Surrogate Replacement

Our first method replaces each P inaj (xj |φj) by an approximate surrogate qinaj (xj |φj ; ηaj):

Ppr(x1:nx) ' q(x1:nx ;κ) :=
∏

{j∈1:nx|aj /∈Sr}

faj (xj |φj)
∏

{j∈1:nx|aj∈Sr}

qinaj (xj |φj ; ηaj) (4)

3

Efficient Bayesian Inference for Nested Simulators

where κ = {ηaj ; aj ∈ Sr} are the surrogate parameters. As per existing amortized variational
approaches (Kingma andWelling, 2014; Rezende and Mohamed, 2015; Le et al., 2016; Ritchie
et al., 2016; Paige and Wood, 2016), each qinaj (xj |φj ; ηaj) is taken as a variational distribution
parametrized by deep neural network with weights ηaj and which takes φj as its input.

Training of these networks is done by minimising the Kullback–Leibler (KL) divergence
from Ppr(x1:nx) to q(x1:nx ;κ) (Paige and Wood, 2016)

κ∗ = argmin
κ

KL (Ppr||qκ) = argmin
{ηaj ;aj∈Sr}

EPpr

− ∑
{j∈1:nx|aj∈Sr}

log qinaj (xj |φj ; ηaj)

 . (5)

This minimization can be done using stochastic gradient descent where the updates for
NSSP r ∈ Sr use the following gradient estimate (see Appendix A)

∇ηrKL ≈ − 1

N

N∑
n=1

nn
x∑

j=1

I(r = anj)∇ηr log(qinr (xnj |φnj ; ηr)), where xn1:nx

i.i.d.∼ Ppr(x1:nx) (6)

and the xn1:nx
can be shared such that the variational approximations for each r ∈ Sr are

made simultaneously.
Carrying out these updates requires us to draw samples from Ppr. If all of our NSSPs

satisfy [Case A], this is not a problem as by assumption we can then draw samples from
each P inaj (xj |φj) and, in turn, samples from Ppr. However, if our program contains NSSPs
which only satisfy [Case B], this will require us to run a separate nested inference (Rainforth,
2018) to generate the required xnj from the corresponding φj . Though this may be potentially
non-trivial, it is, crucially, far easier that running inference on the overall program: because
Ppr itself does not include any conditioning statements, generating these samples does not
require inference to be run for the outer program. As such, each nested inference problem
constitutes its own isolated problem which is far simpler than the overall inference problem.
In other words, the role of sampling from Ppr is only to generate example input-output pairs
for each NSSP, with each surrogate than separately trained based on its local pairs.

2.2. Method 2: Normalisation Constant Approximation

If all of our NSSPs satisfy [Case B], this implies that each has a known unnormalised density
on its internal variables and unknown input-dependent normalizing constant that causes a
double-intractability. If the functional form for all these normalizing constant where known,
this would be sufficient to collapse all the NSSPs into the outer program and produce a
directly evaluable density for the overall program. Our second method thus looks to learn
regressors to predict the normalizing constants and thereby facilitate this.

To formalize this, let us for now assume that the xj returned by each NSSP corresponds
to its full set of internal random draws zj

1:nj
x
, i.e., xj = zj

1:nj
x
, such that we can write

P inaj (xj |φj) = γinaj (xj |φj)
/
Iinaj (φj) = γinaj

(
zj
1:nj

x

∣∣∣φj)/Iinaj (φj) (7)

where γinaj (zj
1:nj

x
|φj) can be evaluated directly (because it is itself an unnormalized probabilis-

tic program density of the form (1)), but Iinaj (φj) is an intractable normalization constant. If
we now introduce a set of regressors Rr(φj ; τr), ∀r ∈ Sr (with parameters τr) to approximate

4

Efficient Bayesian Inference for Nested Simulators

Figure 1: Posterior inferences of the means for each latent dimension from running method
1 with Hamiltonian Monte Carlo on nested Gaussian example. Each prediction
comprises of the means and standard deviations for 5 independent runs of 10,000
samples. The red stars represent the ground true means for each dimension. More
detailed results, shown in Figure 2, emphasize that our inference algorithm has
encapsulated the marginal posteriors almost exactly.

each Iinr (φj), we can approximate Ppr as

Ppr(x1:nx) '
∏

{j∈1:nx|aj /∈Sr}

faj (xj |φj)
∏

{j∈1:nx|aj∈Sr}

γinaj

(
zj
1:nj

x

∣∣∣φj)
Raj (φj ; τaj)

. (8)

We can extend this approach to the case where xj = zj
1:nj

x
by instead defining our reference

measure in the space of Xa := {xj}j∈1:nx|aj /∈Sr
∪ {zj

1:nj
x
}j∈1:nx|aj /∈Sr

and using the pre-image
of the prior program density: Ppr (Xa). We can then run inference in this pre-image space
and rely on the law of the unconscious statistician to ensure the samples produces are from
the desired posterior (see e.g. Rainforth (2017, Section 4.3.2)).

Learning the regressors Rr(φj ; τr) is done in an analogous manner to method one.
Namely we run the program forward to gather pairs {φj , Îr(φj)} for each NSSP, where Îr(φj)
is an unbiased approximation of Ir(φj), and then use this as a training dataset for learning
the regressor. Specifically, for each NSSP we train a neural network regressor to minimize
the expected squared error between Rr(φj ; τr) and Îr(φj). As shown in Appendix B, with
a sufficiently expressive neural network, this scheme ensures Rr(φj ; τr)→ Ir(φj) ∀φj as the
number of training pairs tends to infinity.

3. Experiments

In this section, we use a 60-d nested Guassian example, details of which are given in Ap-
pendix C. The model has been contrived so that we can analytically calculate the posterior
means and therefore validate against ground truth values. Figure 2 demonstrates this for
Method 1 (results for Method 2 are still being developed). We see that accurate inference
was achieved for all but two of the marginal distributions (these were caused by issues in
the stability of the neural network training, which is currently being investigated). Though
still preliminary, these results are very promising in that they demonstrate that we are able
to perform effective inference in far higher dimensions that can be realistically achieved by
importance sampling based approaches, which are the current standard in the field.

5

Efficient Bayesian Inference for Nested Simulators

References

Atılım Güneş Baydin, Lukas Heinrich, Wahid Bhimji, Lei Shao, Saeid Naderiparizi, Andreas
Munk, Jialin Liu, Bradley Gram-Hansen, Gilles Louppe, Lawrence Meadows, Philip Torr,
Victor Lee, Prabhat, Kyle Cranmer, and Frank Wood. Efficient probabilistic inference
in the quest for physics beyond the standard model. In Advances in Neural Information
Processing Systems 33 (NeurIPS), 2019.

Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, The-
ofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D Goodman. Pyro:
Deep universal probabilistic programming. The Journal of Machine Learning Research,
20(1):973–978, 2019.

Mario Lezcano Casado, Atilim Gunes Baydin, David Martínez Rubio, Tuan Anh Le, Frank
Wood, Lukas Heinrich, Gilles Louppe, Kyle Cranmer, Karen Ng, Wahid Bhimji, et al. Im-
provements to inference compilation for probabilistic programming in large-scale scientific
simulators. arXiv preprint arXiv:1712.07901, 2017.

George Casella and Roger L. Berger. Statistical Inference. Thomson Learning. ISBN 978-0-
534-24312-8. Google-Books-ID: 0x_vAAAAMAAJ.

Katalin Csilléry, Michael GB Blum, Oscar E Gaggiotti, and Olivier François. Approximate
bayesian computation (abc) in practice. Trends in ecology & evolution, 25(7):410–418,
2010.

Valentina Di Pasquale, Salvatore Miranda, Raffaele Iannone, and Stefano Riemma. A simu-
lator for human error probability analysis. Reliability Engineering & System Safety, 139:
17–32, 2015.

Tanju Gleisberg, Stefan Höche, F Krauss, M Schönherr, S Schumann, F Siegert, and J Win-
ter. Event generation with sherpa 1.1. Journal of High Energy Physics, 2009(02):007,
2009.

Andrew D Gordon, Thomas A Henzinger, Aditya V Nori, and Sriram K Rajamani. Prob-
abilistic programming. In Proceedings of the on Future of Software Engineering, pages
167–181. ACM, 2014.

Bradley Gram-Hansen, Christian Schröder de Witt, Tom Rainforth, Philip HS Torr,
Yee Whye Teh, and Atılım Güneş Baydin. Hijacking malaria simulators with probabilistic
programming. ICML Workshop on AI for Social Good, 2019.

Katalin M Hangos and Ian T Cameron. Process modelling and model analysis, volume 4.
Academic press London, 2001.

Dieter W Heermann. Computer-simulation methods. In Computer Simulation Methods in
Theoretical Physics, pages 8–12. Springer, 1990.

Isaac M Held. The gap between simulation and understanding in climate modeling. Bulletin
of the American Meteorological Society, 86(11):1609–1614, 2005.

6

Efficient Bayesian Inference for Nested Simulators

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In Proceedings of
the International Conference on Learning Representations (ICLR), 2014.

Tejas D Kulkarni, Pushmeet Kohli, Joshua B Tenenbaum, and Vikash Mansinghka. Picture:
A probabilistic programming language for scene perception. In Proceedings of the ieee
conference on computer vision and pattern recognition, pages 4390–4399, 2015.

Tuan Anh Le, Atilim Gunes Baydin, and Frank Wood. Inference compilation and universal
probabilistic programming. arXiv preprint arXiv:1610.09900, 2016.

Jean-Michel Marin, Pierre Pudlo, Christian P Robert, and Robin J Ryder. Approximate
bayesian computational methods. Statistics and Computing, 22(6):1167–1180, 2012.

Brooks Paige and Frank Wood. Inference networks for sequential monte carlo in graphical
models. In International Conference on Machine Learning, pages 3040–3049, 2016.

Padmavathi Patlolla, Vandana Gunupudi, Armin R Mikler, and Roy T Jacob. Agent-based
simulation tools in computational epidemiology. In International Workshop on Innovative
Internet Community Systems, pages 212–223. Springer, 2004.

Kaare Brandt Petersen et al. The matrix cookbook.

Thomas William Gamlen Rainforth. Automating inference, learning, and design using prob-
abilistic programming. PhD thesis, University of Oxford, 2017.

Tom Rainforth. Nesting probabilistic programs. arXiv preprint arXiv:1803.06328, 2018.

Tom Rainforth, Robert Cornish, Hongseok Yang, and Andrew Warrington. On nesting
monte carlo estimators. In International Conference on Machine Learning, pages 4264–
4273, 2018.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows.
arXiv preprint arXiv:1505.05770, 2015.

Daniel Ritchie, Paul Horsfall, and Noah D Goodman. Deep amortized inference for proba-
bilistic programs. arXiv preprint arXiv:1610.05735, 2016.

T Smith, N Maire, A Ross, M Penny, N Chitnis, A Schapira, A Studer, B Genton, C Lengeler,
Fabrizio Tediosi, et al. Towards a comprehensive simulation model of malaria epidemiology
and control. Parasitology, 135(13):1507–1516, 2008.

Thomas Smith, Nicolas Maire, Klaus Dietz, Gerry F Killeen, Penelope Vounatsou, Louis
Molineaux, and Marcel Tanner. Relationship between the entomologic inoculation rate
and the force of infection for plasmodium falciparum malaria. The American journal of
tropical medicine and hygiene, 75(2_suppl):11–18, 2006.

Dustin Tran, Matthew D Hoffman, Rif A Saurous, Eugene Brevdo, Kevin Murphy, and
David M Blei. Deep probabilistic programming. arXiv preprint arXiv:1701.03757, 2017.

Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. An introduction
to probabilistic programming. arXiv preprint arXiv:1809.10756, 2018.

7

Efficient Bayesian Inference for Nested Simulators

Appendix A. Derivation of Gradient of The Variational Objective

For a given simulator, or program, we denote the proposal for the program as:

Ppr(x1:nx) ' q(x1:nx ;κ) :=
∏

{j∈1:nx|aj /∈Sr}

faj (xj |φj)
∏

{j∈1:nx|aj∈Sr}

qinaj (xj |φj ; ηaj) (9)

where κ = {ηaj ; aj ∈ Sr} are the variational parameters. Using the information projection
we construct the variational objective as follows:

J(κ) = KL(Ppr(x1:nx)||q(x1:nx ;κ))

=

∫
Ppr(x1:nx) log

(
Ppr(x1:nx)

q(x1:nx ;κ)

)
dx

κ∗ = argmin
κ

J(κ)

= argmin
κ

EX∼Ppr(x1:nx)
[− log(q(X = x1:nx ;κ))]

= argmax
κ

EX∼Ppr(x)

 nx∑
j=1,j∈Sr

log(qinaj (Xj = xj |φj ; ηaj))

η∗r = argmax

ηr
EX∼Ppr(x)

 nx∑
j=1

I(aj = r) log(qinr (Xj = xj |φj ; ηr))

 ∀r ∈ Sr,

∇κJ(κ) = ∇κEX∼Ppr(x)

 nx∑
j=1

log(qinaj (Xj = xj |φj ; ηaj))

= EX∼Ppr(x)

 nx∑
j=1

∇κ log(qinaj (Xj = xj |φj ; ηaj)

≈ 1

N

N∑
n=1

nx∑
j=1

∇κ log(qinaj (x
n
j |φj ; ηaj))

Thus, we define the gradients to use for the stochastic gradient ascent for each subproblem
r ∈ Sr as:

∇ηrJ(κ) ≈ 1

N

N∑
n=1

nx∑
j=1

I(r = aj)∇ηr log(qinr (xnj |φj ; ηr)) (10)

where xn1:nx

iid∼ Ppr(x). During training we extract samples from each forward run and train
each NSSP separately.

Appendix B. Details on the Regressor Training

To train our regressors, we use the L2-norm E
[∥∥∥Rr(φj ; τr)− Îinr (φj)

∥∥∥2
2

]
between our regres-

sor Rr(φj ; τr) and our approximations of the marginal Îinr (φj). We then learn parameters
τr so that it minimises this objective, resulting in Rr(φj ; τr) = Iinr (φj) in the limit of a large

8

Efficient Bayesian Inference for Nested Simulators

number of training samples if our neural network has sufficient capacity to exactly capture
Iinr (φj). To see this note that

E
[∥∥∥Rr(φj ; τr)− Îr(φj)∥∥∥2

2

]
= E

[∥∥∥(Rr(φj ; τr)− Ir(φj)) + (Ir(φj)− Îr(φj))
∥∥∥2
2

]
(11)

=E
[
‖Rr(φj ; τr)− Ir(φj)‖22

]
+ E

[∥∥∥Ir(φj)− Îr(φj))∥∥∥2
2

]
(12)

where the second term does not depend on τr and the first is minimized when when
Rr(φj ; τr) = Iaj (φj).

Our objective is defined as:

Lr = Eφj

{
EÎinr

[∥∥∥Rr(φj ; τr)− Îinr (φj)
∥∥∥2
2

∣∣∣∣φj]} (13)

∇τrLr = Eφj

{
EÎinr

[
∇τr

∥∥∥Rr(φj ; τr)− Îinr (φj)
∥∥∥2
2

∣∣∣∣φj]} (14)

where the expectation over the inputs φj is defined by running Ppr forward and, if necessary,
randomly selecting between the inputs that are passed to NSSP r if it is called more than
once (this can further be Rao-Blackwellized by averaging over all the inputs passed to
the NSSP instead of choosing between them). Thus, by running the simulator forward,
collecting samples from the NSSPs generated from sampling the priors of each NSSP, we
can make updates based on ∇τ (Rr(φj ; τ) − Îr(φj))2 to minimise Lr. With this approach,
we must be careful to avoid over and under-fitting. Once trained, we can run inference on
the approximate, unnormalised, target:

γ̂(x1:nx) =

nx∏
i=1,ai /∈SR

fai(xi;φi)

ny∏
k=1,bk

gbk(yk;φk)

nx∏
j=1,aj∈SR

γinaj (xj |φj)
Raj (φj ; τ)

(15)

B.1. An Adjusted Approach for Nested Rejection Samplers

The approach outlined in Method 2 can be improved upon in the case where our nested
sub-procedures are rejection samplers.

For rejection samplers, we always have I(φ) = E[I(A(z, φ) = 1)] where A(z, , φ) = 1 indi-
cates an accepted sample and the expectation is with respect to running a single iteration of
the rejection sampling loop. The naive Monte Carlo estimate for I(φ), 1

N

∑N
n=1 I(A(zn, φ) =

1), is only unbiased, if N is independent of the zn.
Typically, one would like to instead run the rejection sampler in the standard manner,

by which we generate samples by running the sampler until a sample is accepted, at which
point we have generated Na samples, where Na is not independent of the zn, such that the
naive estimate is now biased. However, not doing this could, for example, return an estimate
(̂I)(φ) = 0 which could cause significant issues if not dealt with properly, while it may not
be possible to generate both strictly positive and unbiased estimates for I(φ).

This conundrum can be circumvented by instead trying to directly estimate 1/I(φ) and
use this as the basis for the regressor. This is possible because rejection samplers have the

9

Efficient Bayesian Inference for Nested Simulators

property E[Na|φ] = 1/I(φ) as follows:

E[Na|φ] = E

[
Na∑
n=1

1

∣∣∣∣∣φ
]

= E

[∞∑
n=1

I(Na ≥ n)

∣∣∣∣∣φ
]

=
∞∑
n=1

E [I(Na ≥ n)|φ]

=

∞∑
n=0

E [I(Na > n)|φ] =

∞∑
n=0

(1− I(φ))n =
1

I(φ)

Therefore, we learn our regressor R′to go from φj to E[Na|φ], exploiting the fact that Na is
an unbiased estimate of the latter, and subsequently use

P inaj (xj |φj) ≈ γinaj (xj |φj)R′aj (φj ; τaj) (16)
to construct the approximate objective.

It is interesting to further note that
E[γinaj (xj |φj)Na|xj , φj] = P inaj (xj |φj) (17)

such that it should also be useful to use this result to develop pseudo-marginal samplers for
such problems.

Appendix C. Experiment: Nested Gaussian NSSP

We take the model of a high-dimensional multivariate Gaussian with unkown mean and
sample certain dimensions such that they rely on Gaussian NSSPs. The purpose of such an
example is to demonstrate the validity of our methodoly, as it is one o the few examples
in which we analytically calculate the correct ground truth. The model takes the following
form:

µ← 0

y← {y1, . . . , yd}
x1 ∼ N (µ0,Σ0)

for i = 2 : n

if i is odd

xi ∼ innerprogram(xi−1)

else :

xi ∼ N (µi|i−1,Σi|i−1)

p(y|x) =MVN (µx, Σ̂; y)

where the objective is to the mean of the multivariate normal (MVN). The (unnormalized)
program density is given by:

p(x1:d, y1:N) = p(x1:d)
N∏
i=1

p(yi|x1:d)

Now if we choose Σ to be a valid covariance matrix with Σij = 0 if |i− j| ≥ 2, then we can
write

p(x1:d) = p(x1)p(x2|x1) . . . p(xd|xd−1)

10

Efficient Bayesian Inference for Nested Simulators

and we can sample x1:d sequentially from a Markov process. As the covariance matrix takes
this structure we can use standard identities, as in Petersen et al., to analytically calculate
the value of µx, which is plotted in Figure 1. Histograms both the predicted and ground
truth values are provided in Figure 2 for all 60 dimensions.

Figure 2: Histogram for each Latent variable, compared to the ground truth distribution
for that latent variable.

11

	Introduction and Background
	Approximating Sub-Procedures
	Method 1: Surrogate Replacement
	Method 2: Normalisation Constant Approximation

	Experiments
	Derivation of Gradient of The Variational Objective
	Details on the Regressor Training
	An Adjusted Approach for Nested Rejection Samplers

	Experiment: Nested Gaussian NSSP

