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Abstract

We present a new approach to automatic
amortized inference in universal probabilistic
programs which improves performance com-
pared to current methods. Our approach
is a variation of inference compilation (IC)
which leverages deep neural networks to ap-
proximate a posterior distribution over latent
variables in a probabilistic program. A chal-
lenge with existing IC network architectures
is that they can fail to model long-range de-
pendencies between latent variables. To ad-
dress this, we introduce an attention mech-
anism that attends to the most salient vari-
ables previously sampled in the execution of a
probabilistic program. We demonstrate that
the addition of attention allows the proposal
distributions to better match the true pos-
terior, enhancing inference about latent vari-
ables in simulators.

1 INTRODUCTION

Probabilistic programming languages (van de Meent
et al., 2018; Mansinghka et al., 2014; Milch et al.,
2005; Wood et al., 2014; Pfeffer, 2009; Minka et al.,
2018; Goodman et al., 2008; Gordon et al., 2014) al-
low for automatic inference about random variables in
†Equal contribution
Preprint. Work in progress

generative models written as programs. Conditions on
these random variables are imposed through observe
statements, while the sample statements define latent
variables we seek to draw inference about. Common to
the different languages is the existence of an inference
backend, which contains one or more general inference
methods.

Recent research has addressed the task of making re-
peated inference less computationally expensive, by
using up-front computation to reduce the cost of later
executions, an approach known as amortized infer-
ence (Gershman and Goodman, 2014). One new
method called inference compilation (IC) (Le et al.,
2017) enables fast inference on arbitrarily complex
and non-differentiable generative models. The approx-
imate posterior distribution it learns can be combined
with importance sampling at inference time, so that
inference is asymptotically correct. It has been suc-
cessfully used for Captcha solving (Le et al., 2017) and
inference in particle physics simulators (Baydin et al.,
2018).

The neural network used in IC is trained to approxi-
mate the joint posterior given the observed variables
by sequentially proposing a distribution for each latent
variable generated during an execution of a program.
As such, capturing the possible dependencies on pre-
viously sampled variables is essential to achieve good
performance. IC uses a Long Short Term Memory
(LSTM)-based architecture (Hochreiter and Schmid-
huber, 1997) to encapsulate these dependencies. How-
ever, this architecture fails to learn the dependency be-
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Figure 1: The electric circuit modelled by the proba-
bilistic program in Figure 2.

tween highly dependent random variables when they
are sampled far apart (with several other variables
sampled in-between). This motivates allowing the neu-
ral network which parameterizes the proposal distri-
bution for each latent variable to explicitly access any
previously sampled variables. Inspired by the promis-
ing results of attention for tasks involving long-range
dependencies (Jaderberg et al., 2015; Vaswani et al.,
2017; Seo et al., 2016), we implemented an attention
mechanism over previously sampled values. This en-
ables the network to selectively attend to any com-
bination of previously sampled values, regardless of
their order and the trace length. We show that our
approach significantly improves the approximation of
the posterior, and hence facilitates faster inference.

The principle contributions of this paper are two-fold:
we show that attention improves the performance of
IC, and we show that we are able to use IC to per-
form fault detection via amortized inference in com-
plex simulators. Section 2 introduces the concepts of
probabilistic programming, inference compilation and
attention for neural networks. We then describe our
approach in Section 3 and our experiments in Sec-
tion 4.

2 BACKGROUND

2.1 Probabilistic Programming

Probabilistic programming languages (PPLs) allow
the specification of probabilistic generative models
(and therefore probability distributions) as computer
programs. Universal PPLs, which are based on Tur-
ing complete languages, may express models with an
unbounded number of random variables. To this end,
they combine traditional programming languages with
the ability to sample a latent random variable (using
syntax which we denote as a sample statement) and to
condition these latent variables on the values of other,
observed, random variables (using an observe state-
ment). More formally, following (Le et al., 2017), we
will operate on higher-order probabilistic programs in
which we discuss the joint distribution of variables in
an execution “trace” (xt, at, it), where t = 1, . . . , T ,
with T being the trace length (which may vary be-
tween executions). xt denotes the value sampled at the

Figure 2: Probabilistic program modeling the circuit
in Figure 1 with a possibly faulty resistor. First the
voltage, V , of the battery is sampled from a Gaus-
sian prior centered on 5V. We then sample whether
or not the resistor is faulty. If it is, its value is sam-
pled from a broad uniform distribution. Otherwise,
its value is sampled from a tightly peaked Gaussian.
A noisy measurement of the current is then sampled
from a Gaussian prior centered on the true value.

tth sample statement encountered, at is the address of
this sample statement and it represents the instance:
the number of times the same address has been en-
countered previously, i.e. it =

∑t
j=i 1(at = aj). We

shall assume that there is a fixed number of observa-
tions, N , and these are denoted by y = (y1, . . . , yN ),
and we denote the latent variables as x = (x1, . . . , xT ).
Using this formalism, we express the joint distribution
of a trace and observations as,

p(x,y) =

T∏
t=1

fat(xt|x1:t−1)
N∏
n=1

gn(yn|x1:τ(n)), (1)

where fat is the probability distribution specified by
the sample statement at address at, and gn is the prob-
ability distribution specified by the nth observe state-
ment. A mapping from the index, n, of the observe
statement to the index of the most recent sample
statement before the nth observe statement, is de-
noted by τ .

As an example, consider the simple circuit as well as
the probabilistic program shown in Figure 1, which
expresses the joint distribution over the battery volt-
age, V , whether the resistor is faulty, F , the resistance
of the resistor, R, and the measured current, I, as
p(V, F,R, I) = p(I|V,R)p(R|F )p(F )p(V ).

Traces will have the form (xt, at, it)
T=3
t=1 where there are

two trace “types,” one corresponding to the sequence
of addresses of random variables generated if the re-
sistor is faulty, and the other the opposite. In other
words a1 is the address where V is sampled, a2 is the
address where F is sampled, and a3 is the address from
whichR is sampled, which depends on F . The instance
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counts in this program are always i1 = i2 = i3 = 1, and
the observation, measured_current ∼ N (I, 0.001),
with N = 1.

This generative model allows posterior inference to
be performed over the joint distribution of the input
voltage V , current I, and “faulty” variable F given
the observed measured_current. Estimates of the
marginal posterior distribution over F make it pos-
sible to directly answer questions such as whether the
resistor is faulty or not. We will return to a more
complex version of this problem in section 4.2. Gen-
erally, PPLs are designed to infer posterior distribu-
tions over the latent variables given the observations.
Inference in probabilistic programs is carried out
with algorithms such as Sequential Importance Sam-
pling (SIS) (Arulampalam et al., 2002), Lightweight
Metropolis-Hastings (Wingate et al., 2011), and Se-
quential Monte Carlo (Del Moral et al., 2006). How-
ever, these algorithms are too computationally expen-
sive for use in real-time applications. Therefore, re-
cent research (Le et al., 2017; Kulkarni et al., 2015)
has considered amortizing the computational cost by
performing up-front computation (for a given model)
to allow faster inference later (given this model and
any observed values).

2.2 Inference Compilation

IC (Le et al., 2017) is a generalized method for per-
forming amortized inference in the framework of uni-
versal probabilistic programming. It involves training
neural networks, which we describe as “inference net-
works,” whose outputs parameterize proposal distribu-
tions used for SIS.

2.2.1 Objective Function

In IC, we desire to match the proposal distribution,
q(x|y;φ) =

∏T
t=1 qat,it(xt|ηt(x1:t−1,y, φ)), closely to

the true posterior, p(x|y). The Kullback-Leibler di-
vergence, DKL(p(x|y)||q(x|y;φ)), is used as a measure
of this “closeness”. In order to ensure over any ob-
served y, an expectation of this divergence is taken
with respect to p(y),

L(φ) = Ep(y)[DKL(p(x|y)||q(x|y;φ))]
= Ep(x,y)[− log q(x|y, φ)] + const

(2)

where the joint distribution takes the form of Eq. (1).

The parameters, φ, are updated using gradient descent
using the following estimate of the gradient of (2),

∇φL(φ) ≈
1

M

M∑
m=1

−∇φ log q(xm|ym, φ), (3)

where (xm,ym) ∼ p(x,y) for m = {1, . . . ,M}. Note
that the loss used, and the estimates of the gradi-

ents, are identical to those in the sleep-phase of wake-
sleep (Hinton et al., 1995).

2.2.2 Architecture

The architecture used in IC (Baydin et al., 2018; Le
et al., 2017) consists of the black components shown in
Figure 3b. Before performing inference, observations
y are embedded by a learned observe embedder, fobs.
At each sample statement encountered as the program
is run, the LSTM is run for one time step. It receives
an input consisting of the concatenation of the embed-
ding of the observed values, fobs(y), an embedding of
xt−1, the value sampled at the previous sample state-
ment, embeddings of the current address, instance and
distribution-type, denoted at, it and dt respectively,
embeddings of the previous address, instance and dis-
tribution type: at−1, it−1 and dt−1.

The embedder used for xt−1 is specific to (at−1, it−1),
the address and instance from which xt−1 was sam-
pled. The output of the LSTM is fed into a proposal
layer, which is specific to the address and instance (at
and it). The proposal layer outputs the parameters,
ηt, of a proposal distribution for the variable at this
sample statement.

2.2.3 Inference using Sequential Importance
Sampling

In IC inference is performed by SIS (Arulampalam
et al., 2002; Doucet and Johansen, 2009), which is com-
patible with latent variable inference in higher-order
probabilistic programs (Wood et al., 2014). SIS pro-
duces a set of K weighted samples {(xk, wk)}Kk=1, such
that the posterior and expectations of a function g(x)
are approximated by

p(x|y) ≈ p̂(x|y) =
∑K
k=1 wkδ(xk − x)∑K

k=1 wk

E[g(x)] ≈
∑K
k=1 wkg(xk)∑K

k=1 wk
,

(4)

where δ is the Dirac delta function. Each weight wk is
calculated for each trace xk according to

wk =

N∏
n=1

gn(yn|xk1:τk(n))
Tk∏
t=1

fat(x
k
t |xk1:t−1)

qat,it(x
k
t |xk1:t−1)

,

where Tk denotes the kth trace length with k =
{1, . . . ,K}, and qat,it is given by the inference network
learned by minimizing the loss function (3).

2.3 Dot-product Attention

Attention has recently been shown to be useful in a
number of tasks, including image captioning, machine
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Figure 3: Feedforward and LSTM neural network architectures with attention mechanisms. The components
inside the dashed line are run once at each sample statement in a program trace, while the parts outside this
line are only run once per trace. The attention mechanism is denoted in blue.

translation, and image generation (Xu et al., 2015;
Bahdanau et al., 2014; Gregor et al., 2015). The two
broad types of attention are hard and soft attention.
Hard attention (Ba et al., 2014; Xu et al., 2015) se-
lects a single “location” to attend to, and thus requires
only this location to be embedded. However, it is
non-differentiable. In contrast, soft attention mech-
anisms (Vaswani et al., 2017; Xu et al., 2015) are fully
differentiable. They typically require splitting the in-
put into a finite number of locations. Each location is
embedded separately, and a weighted average of these
embeddings is returned as the output.

Our proposed architecture incorporates dot-product
attention (Luong et al., 2015; Vaswani et al., 2017),
a form of soft attention. This choice is justified by
the embeddings of the value sampled at time step t
being used at all later time steps t + 1, . . . , T . This
means that the computational cost of calculating the
embeddings scales linearly with the trace length. Since
this is no worse than the rate that hard attention
achieves, we select soft attention for its differentiabil-
ity. The specific use of dot-product attention is due to
the efficiency of the calculation of attention weights.
Each trace requires the computation of O(T 2) atten-
tion weights and some programs may contain thou-
sands of sample statements (Baydin et al., 2018) so
fast weight computation is paramount.

The dot-product attention module (Luong et al., 2015;
Vaswani et al., 2017), shown in Figure 4, receives three
inputs: one or more query vectors (which describe the
desired properties of the locations to attend to), a key

SoftMax
MatMul

MatMul Scale

Figure 4: A scaled dot-product attention mechanism.
Figure adapted from (Vaswani et al., 2017)

vector for each location, and a value vector for each
location. In Figure 3 in the Appendix, these are rep-
resented as the matrices Q ∈ Rq×k, K ∈ Rk×l, and
V ∈ Rl×v, respectively. Here, l is the number of lo-
cations, k is the length of each query and key embed-
ding, v is the length of each value embedding, and q
is the number of queries. For each query, attention
weights are computed for every location by taking the
dot-product of the query vector and the relevant key.
A SoftMax is then applied to ensure that the sum of
the weights over every location is 1 (for each query).
These weights are used to compute weighted averages
of the values. The output of the attention mechanism
is a concatenation of these. This procedure can be
performed efficiently using matrix multiplications, and
so calculating the attention weights is more computa-
tionally efficient than in other types of soft attention
(which typically differ in how the weights are calcu-
lated) (Bahdanau et al., 2014). In scaled dot-product
attention (Vaswani et al., 2017), the product QK is
multiplied by a scalar before performing the softmax.
This scalar is chosen to ensure that the output of the
softmax is not saturated upon initialising the weights,
so the gradients propagated through are large enough
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for effective training.

3 METHOD

We compare against two “baseline architectures” in
all experiments: a feedforward network learned for
each address and instance pair (a, i); and the LSTM-
based architecture described in section 2.2.2. These
are shown as the black components of Figure 3a and 3b
respectively. The feedforward inference network con-
sists of a single proposal layer, fpropat,it

. This embedding
layer takes all observe embeddings as input and com-
putes ηt as output. Since no part of its input is de-
pendent on the previously sampled values, unlike the
LSTM architectures, this architecture is completely
unable to learn proposal distributions with dependen-
cies between latent variables before the addition of an
attention mechanism.

To attend to previously sampled variables we add dot-
product attention, described in section 2.3, to both
the LSTM and feedforward architectures, as shown in
Figure 3. During training we build a data structure,
dk,v,q, with associative mappings linking address/in-
stance pairs (a, i) to key, value and query embedders.
The embedders in dk,v,q are constructed dynamically
for each new address and instance pair (at, it) encoun-
tered.

During inference, the queries, keys, and values input to
the attention mechanism at each sample statement are
calculated as follows: for the first sample statement,
identified by (a1, i1), no previously sampled variables
exist and so the attention module outputs a vector
of zeros. Using the associated key and value embed-
ders in dk,v,q, the variable sampled, x1, is embedded
to yield a key and a value, k1 and v1. (k1, v1) are kept
in memory throughout the trace, allowing fast access
for subsequent sample statements. The second sample
statement can attend to the first sampled variable via
(k1, v1) using a query. The embedder used for find-
ing the query takes as input the observe embedding,
fobs(y), and is specific to the current address and in-
stance (a2, i2). As with the key/value embedders, the
query embedder is found in dk,v,q. The output of the
attention module is then fed to the LSTM or proposal
layer (see Figure 3). As for x1, x2 is sampled and em-
bedded using the embedders stored in dk,v,q, yielding
the key, value pair (k2, v2). This procedure is repeated
until the end of the trace, as defined by the probabilis-
tic program. In the context of higher-order programs,
an address and instance pair may be encountered dur-
ing inference that has not been seen during training.
In this case the proposal layers are not trained, and
so the standard IC approach is to use the prior as a
proposal distribution. For the same reason, the key/-

value embedders do not exist and so no keys or values
are created for this (at, it). This prevents later sample
statements from attending to the variable sampled at
(at, it).

4 EXPERIMENTS AND RESULTS

We implemented our attention mechanism in, and per-
formed experiments with, pyprob (Le et al., 2017; Bay-
din and Le, 2018), a PPL designed for IC. For both
experiments the inference networks were trained us-
ing Adam (Kingma and Ba, 2014) with hyperparam-
eters β1 = 0.9 and β2 = 0.999 to optimize the loss
given in Eq. (2). The attention modules we consider
use q = 4, k = 16 and v = 8. We consider feed-
forward and LSTM architectures both with and with-
out attention, denoted as MFF w/o ATT, MFF w/ ATT,
MLSTM w/o ATT and MLSTM w/ ATT.

We test the architectures in two experiments: an illus-
trative example involving the estimation of a highly
correlated posterior distribution over two latent vari-
ables, and an application of amortized inference to the
problem of real-time circuit fault diagnosis.

We use the effective sample size (Kong, 1992) (ESS)
of each estimated posterior as a quantitative metric
to describe the quality of the proposal distribution,
and resulting posterior estimate. The effective sam-
ple size is not a perfect metric for the quality of a
posterior as, for example, it depends only on the im-
portance weights of the posterior samples, and so can
be high even if the samples lack diversity and/or miss
modes. However, we use it alongside qualitative plots
which show that the improvements in ESS come about
through qualitatively better proposals and estimates of
the posterior distributions.

4.1 Magnitude of Random Vector

We first demonstrate the efficacy of our approach on
a simple, pedagogical example. The task is to in-
fer a distribution over two latent variables, x and y,
conditioned on r̂2, a noisy observation of x2 + y2.
The generative model first samples (x, y) coordinates
from identical and independent Gaussian priors: x ∼
N (0, σp), y ∼ N (0, σp). A noisy estimate of the ra-
dius, r̂, is then observed with a likelihood given by
p(r̂2|x, y) = N (r̂2|x2 + y2, σl). We use σp = 10 and
σl = 0.5, which leads to a tightly peaked posterior
exhibiting circular symmetry, and so a strong depen-
dence between x and y.

In the model as just described, where x and y are sam-
pled consecutively, it is trivial for either the LSTM or
the attentive architecture to learn this relationship.
However, we are interested in testing the learning of
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Figure 5: Different IC neural network architectures, with and without attention, showing improved IC perfor-
mance for those with attention on an inference task involving highly correlated latent random variables. Each
image shows 2000 posterior samples of x and y from the model described in section 4 conditioned on r̂2 = 200.
The top row contains samples from program with 10 nuisance variables, i.e. trace length T = 12. The bottom
row contains samples from the model with 20 nuisance variables, i.e. trace length T = 22. The white circles
indicate the mode of the true posterior. MFF w/o ATT is unable to learn any dependency between x and y. With
10 nuisance variables, we see that attention provides no advantage over the standard LSTM IC architecture.
However, as the number of nuisance variables increases from 10 to 20, attention becomes beneficial, maintaining
a high effective sample size (ESS) while the performance of MLSTM w/o ATT reduces to that of MFF w/o ATT.
The results were similar when different radii were observed. The ESS in the figure is calculated by averaging 10
estimates.
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Ê(w3)
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Figure 6: Attention weights used on each previously
sampled variable.

long-range dependencies. We therefore consider vari-
ations of this model where, after sampling x, and be-
fore sampling y, some number of “nuisance” random
variables are sampled. These nuisance random vari-
ables are not used elsewhere in the program, and so
serve only to increase the “distance” between x and
y. In particular, we consider two programs: one con-
taining 10 “nuisance” variables, and one containing
20. Program 1 provides pseudocode for these pro-
grams. All inference networks are trained using 6×105
traces with minibatches of size 128. The learning rate

is decreased every 2 × 105 traces, iterating through
{10−3, 10−4, 10−5}.
Figure 5 shows 2000 samples from the pro-
posal distributions for each program, q(x, y|r̂2) =∫
z1:i

q(x, y, z1:i|r̂2)dz1:i for i = {10, 20}, produced by
each architecture. We see that MFF w/o ATT is unable
to make proposals capturing the dependency between
x and y. This illustrates that allowing the neural net-
work to “remember” (via attention or the LSTM core)
the sampled value of x is necessary to accurately ap-
proximate the posterior. We observe that with only
10 nuisance random variables there is no advantage in
using the attention mechanism compared to an LSTM
core. However, when the number of nuisance random
variables increases to 20 the LSTM core is no longer
able to capture the dependency between x and y. In
contrast, the architectures with attention mechanisms
are unaffected.

Program 1: Generative model for the magnitude of a
random vector with M nuisance random variables.

def magnitude(obs, M ):
x = sample(Normal(0, 10))
for _ in range(M ):

# nuisance variables to extend trace

_ = sample(Normal(0,10))

y = sample(Normal(0,10))
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Figure 7: Fifth-order band-pass Butterworth filter with resistors, capacitors and inductors denoted by R, C,
and L respectively. The dashed lines represent possible short circuits. The existence of these short circuits and
whether or not each component is faulty (represented by a noisy component value) or disconnected is sampled
according to the generative model. Given observations of Vout for various input frequencies, the task is to infer
a distribution over possible faults such as short circuits and poorly connected or incorrectly valued components.

observe(obs2,
Likelihood=Normal(x2 + y2, 0.1))

return x, y

Figure 6 shows the average attention weights given to
each previously sampled variable (by each of the four
queries) when creating a proposal distribution for y. It
can be seen that queries 1 and 4 attend solely to x, ex-
plaining how the attention mechanism enables the in-
ference network to capture the long-term dependency,
and ignore the nuisance variables.

4.2 Electronic Circuit Fault Diagnosis

For our second experiment, we consider performing in-
ference in a probabilistic program that imports and
uses a pre-existing electronic circuit simulator (Ven-
turini et al., 2017). Specifically, we will consider a
Butterworth filter as shown in Figure 7. This is op-
erated with an input voltage composed of a 5V DC
signal and a 1V AC signal. The observable output
voltages at different AC frequencies are shown in Fig-
ure 4 in the Appendix. The task is to infer whether or
not each component in the Butterworth filter is faulty
given the observed complex-valued output voltage Vout
(i.e. voltage magnitude and phase) at 40 different fre-
quencies. To perform inference we write a probabilis-
tic program that iterates through each component of
the circuit and samples in the following order: first,
whether or not it is correctly connected to the rest of
the circuit. Second, the component value is sampled
from a mixture of a broad uniform distribution and a
tightly peaked Gaussian, both centered on the nominal
value. The value is sampled from the tightly peaked
Gaussian with 98% probability and from the uniform
distribution with 2% probability. Conceptually, one
can interpret the tightly peaked Gaussian as the dis-
tribution given that the component has been correctly
made. The broad uniform distribution represents the
distribution for components that are faulty.

To test each inference network, we generate 100 differ-
ent observations by running the probabilistic program,
and attempt to infer the posterior using each differ-
ent network architecture. For each inference network

architecture, we estimate the posterior distribution 5
times using importance sampling with 20 traces each
time. Across the 5 estimates, we compute the aver-
age ESS, and average these over all 100 observations.
The averaged results were 1.40 for MFF w/o ATT, 7.26
for MLSTM w/o ATT, 8.46 for MFF w/ ATT and 8.35 for
MLSTM w/ ATT.

The attention-based architecture has an 16.5% higher
average ESS than the LSTM core, showing that the use
of attention leads to quantitatively better proposal dis-
tributions. We further find that whenever the observed
signal appears to originate from a correctly working
Butterworth filter, all architectures seem to produce
reasonable predictive posterior distributions - i.e. the
distribution of the voltage signal generated by the sam-
pled latent variables. However, the attention-based
architectures yield a higher average ESS with only
a few exceptions. When the observed signal clearly
originates from an erroneous filter, MFF w/o ATT pro-
duces predictive posterior distributions which poorly
fit the observed data. The LSTM-based architecture
produces better predictive posterior distributions but
these are still significantly worse than the distribu-
tions produced by the attention-based architecture in
almost all cases where the filter is broken. Figure 8
shows inference performance for one such observation
originating from a filter in which the component is
faulty. We plot voltages generated according to the
sampled latent variables from the predictive proposal
distributions using each architecture. The propos-
als from MFF w/ ATT and MLSTM w/ ATT are clustered
near to the observations, whereas the proposals from
MFF w/o ATT and MLSTM w/o ATT produce many pro-
posals that do not fit the observations.

We suspect that these outliers occur due to the inabil-
ity of MFF w/o ATT and MLSTM w/o ATT to learn long-
range dependencies. For example, an output voltage of
zero could be explained by a number of different faults
(e.g. a short-circuit across C2 or across C4). If the
resulting dependency between these can be learned,
the proposals could consistently predict that only one
is broken (predicting more would be unlikely due to
the strong prior on parts working). However, if the
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Figure 8: Reconstruction of the output voltage using samples from each proposal distribution. In the architectures
with attention, the sampled voltages are almost all close to the observations (green ‘x’s) whereas, without
attention, the proposals place high probability in regions which do not fit the observations. These better proposal
distributions lead the higher effective sample sizes shown in each figure (mean and standard deviation, calculated
with 5 estimates). The proposal distribution is shown using 100 samples form each architecture.

Figure 9: Posterior probability assigned to possible causes of failure. The observations used are the same as those
in Figure 8. In the simulation which generated these observations, L1 was the component at fault. However,
the observations do not contain enough information to infer this exactly, and so being close to the ground truth
posterior (as shown in green) is the best the inference networks can do. The ground truth posterior was inferred
using importance sampling with no inference network and 17 million samples. The inferred posteriors shown
were each estimated using 1000 samples. It can be seen that the architectures without attention place very little
probability on L1 or L5 being broken, despite these having a combined probability of about 20% according to
the true posterior. In particular, they place almost no probability on L5 being faulty, even though it was the
faulty component in the simulation used to create the observed voltages.

dependency is not captured, the proposals would be
prone to predicting that zero or multiple components
are broken. This interpretation is supported by Figure
8, where both architectures without attention are seen
to sometimes propose an output voltage corresponding
closely to a working circuit.

Figure 9 shows an example of the posterior distribu-
tions inferred over possible faults by each architecture.
For this purpose, a component is considered faulty
when its value is outside of a 0.3% tolerance of its
nominal value. L5 was at fault when the observations
used were generated, but the observations do not al-
low this to be inferred with confidence as other fail-
ures could have produced the same observations. This
is reflected in the ground truth posterior placing lit-
tle probability on L5 being faulty. The architectures
with attention manage to most closely fit the ground
truth posterior. In particular, they assign probabil-

ity to L5 being faulty whereas the other architectures
assign very little.

5 DISCUSSION AND CONCLUSION

We have demonstrated that the standard LSTM core
used in IC can fail to capture long-range dependen-
cies between latent variables. To address this, we have
proposed an attention mechanism which enables the
inference network to attend to the most salient previ-
ously sampled variables in an execution trace. We fur-
ther demonstrate that attention improves inference in
a practical application of IC, yielding better proposal
distributions and thus posteriors with an effective sam-
ple size 16.5% higher than when using the LSTM core.

Our work leads to several avenues of future research:
first, while we demonstrate the efficacy of an archi-
tecture using only an attention mechanism relative to
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an architecture using only an LSTM, further inves-
tigation is needed to determine whether there could
be additional benefits from using both in conjunction.
Additionally, this work raises the possibility of extend-
ing the usage of such attention mechanisms to attend
to the observations in a generic way. This could enable
the inference network to filter out noise in the observa-
tions and reduce computation time. Furthermore, the
inference compilation framework currently requires a
fixed number of observations. An attention mechanism
over the observations may allow this requirement to be
relaxed.
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