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ABSTRACT

Atmospheric retrieval determines the properties of an atmosphere based on its measured spectrum.

The low signal-to-noise ratio of exoplanet observations require a Bayesian approach to determine

posterior probability distributions of each model parameter, given observed spectra. This inference is

computationally expensive, as it requires many executions of a costly radiative transfer (RT) simulation

for each set of sampled model parameters. Machine learning (ML) has recently been shown to provide

a significant reduction in runtime for retrievals, mainly by training inverse ML models that predict

parameter distributions, given observed spectra, albeit with reduced posterior accuracy. Here we

present a novel approach to retrieval by training a forward ML surrogate model that predicts spectra

given model parameters, providing a fast approximate RT simulation that can be used in a conventional

Bayesian retrieval framework without significant loss of accuracy. We demonstrate our method on the

emission spectrum of HD 189733 b and find Bhattacharyya coefficients of 97.74 – 99.74% between

our 1D marginalized posterior distributions and those of the Bayesian Atmospheric Radiative Transfer

(BART) code. Our retrieval method is ∼20× faster than BART when run on an Intel i7-4770 central

processing unit (CPU). Neural-network computation using an NVIDIA Titan Xp graphics processing

unit is ∼600× faster than BART on that CPU.

Keywords: techniques: retrieval — techniques: machine learning — methods: statistical — planets

and satellites: atmospheres — planets and satellites: individual (HD 189733 b)

1. INTRODUCTION

Over the past decades, exoplanet studies have ex-

panded from their detection to include characteriza-

tion of their atmospheres via retrieval (Deming & Sea-

ger 2017). Retrieval is the inverse modeling technique

whereby forward models of a planet’s spectrum are com-

pared to observational data in order to constrain the
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model parameters (Madhusudhan 2018). These typi-

cally include the shape of the thermal profile, abun-

dances of species, and condensate properties. While

some solar-system objects can be characterized with

simpler approaches (such as Levenberg-Marquardt min-

imization) due to their high signal-to-noise ratios (e.g.,

Koskinen et al. 2016), retrieval on noisy exoplanet spec-

tra require Bayesian methods to provide a distribution

of models that can explain the observed data. The pos-

terior distribution resulting from a Bayesian retrieval

places limits on each model parameter (constrained

within some range, an upper or lower limit, or uncon-
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strained), informing the statistical significance of the re-

sult.

Bayesian retrieval methods involve evaluating thou-

sands to millions of spectra, integrating over the ob-

servational bandpasses, and comparing to observations.

Depending on model complexity, this requires hundreds

to thousands of parallelizable compute hours, resulting

in hours to days of runtime. Calculating the model spec-

tra by solving the radiative transfer (RT) equation takes

the vast majority of compute time.

Machine learning (ML) encompasses algorithms that

learn representations of and uncover relationships within

a collection of data samples. Deep learning (Goodfellow

et al. 2016) is a subfield of ML that is based on neural

networks (NNs), which are highly-flexible differentiable

functions that can be fit to data. NNs can classify im-

ages (He et al. 2016), recognize speech (Amodei et al.

2016), and translate between languages (Wu et al. 2016).

NNs consist of a hierarchy of layers that contain nodes

performing weighted non-linear transformations of their

inputs, through a series of hidden layers, to a desired

output. For example, for a retrieval, one might have

the input layer receive the observed spectrum, hidden

layers extract features, and the output layer predict the

underlying atmospheric parameters. NN training con-

ventionally uses gradient-based optimization, iteratively

adjusting the weights of the connections between nodes

to minimize the error between the NN’s prediction and

the desired output (Rumelhart et al. 1986).

Recent applications of ML to atmospheric retrieval re-

duced compute time from hundreds of hours to minutes

or less. Márquez-Neila et al. (2018, HELA) presented a

random forest of regression trees to build predictive dis-

tributions comparable to the posterior distributions of

traditional, Bayesian retrievals. Zingales & Waldmann

(2018, ExoGAN) utilized a generative adversarial net-

work (GAN, Goodfellow et al. 2014) to retrieve distri-

butions for model parameters. Waldmann & Griffith

(2019, PlanetNet) used a convolutional NN (CNN) to

map spatial and spectral features across Saturn. In

Cobb et al. (2019), we introduced plan-net, an en-

semble of Bayesian neural networks that uses param-

eter correlations to inform the uncertainty on retrieved

parameters. Hayes et al. (2019) demonstrated a new ap-

proach to ML retrieval by applying k -means clustering

to a principal component analysis of the observed spec-

trum to inform a standard Bayesian retrieval. Johnsen

& Marley (2019) showed that a dense NN can provide

quick estimations of atmospheric properties.

While these approaches are promising, all except

Hayes et al. (2019) suffer from a common deficiency:

the reduction in computational time is accompanied by

a reduction in posterior accuracy because they are not

performing a true Bayesian inference. For ML to become

an integral part of atmospheric retrieval, the posterior

accuracy must be preserved.

The solution lies in simulation-based inference meth-

ods (Cranmer et al. 2019). While directly using a sim-

ulator (e.g., RT code) requires a consistent amount of

compute time for each new inference (e.g., retrieval),

surrogate models that emulate the simulator (e.g, NNs)

allow new data to be quickly evaluated after an up-front

computational cost to train the surrogate (Kasim et al.

2020; Munk et al. 2019). ML and simulation-based infer-

ence approaches have been successfully applied to a va-

riety of tasks ranging from quantum chemistry (Gilmer

et al. 2017) to particle physics (Brehmer et al. 2018;

Baydin et al. 2019), resulting in significant reductions

in compute cost with minimal loss in accuracy.

Here we present a novel application of this approach

to retrieval, which uses an NN model of RT within a

Bayesian framework, and apply it to the emission spec-

trum of HD 189733 b. Our general method is to (1) gen-

erate a data set over some parameter space, (2) train a

surrogate forward model on the generated data, and (3)

infer the inverse process via a Bayesian sampler (Figure

1). Our approach circumvents the existing limitations

of ML retrieval methods, which seek to directly learn

the inverse process, by learning the forward, determin-

istic process (RT) and using the simulator surrogate in

a standard inference pipeline. This approach preserves

the accuracy of the Bayesian inference and, while slower

than direct ML retrieval, is still much faster than com-

puting RT.

In Section 2 we introduce two software packages that

implement our approach for ML atmospheric retrieval.

Section 3 details our application of these packages to HD

189733 b, and Section 4 describes our results. Finally,

Section 5 presents conclusions.

2. SOFTWARE

We have developed two Python packages implement-

ing our retrieval method for this investigation. Both are

open-source software, with full documentation, under

the Reproducible Research Software License1. We en-

courage users to contribute to the code via pull requests

on Github.

2.1. MARGE

At its core, our ML retrieval approach relies on an

NN surrogate model for RT. Training an NN requires a

1 https://planets.ucf.edu/resources/reproducible-research/
software-license/

https://planets.ucf.edu/resources/reproducible-research/software-license/
https://planets.ucf.edu/resources/reproducible-research/software-license/


Accurate Machine Learning Atmospheric Retrieval 3

  

… 

MARGE

Parameters
θ
i

RT Simulator
(slow)

Spectrum
s
i

RT Simulator
Surrogate 

(fast)

Parameters
θ

Spectrum
s

Neural 
Network 
Training

HOMER Observed 
spectrum
s
obs

 

Bayesian 
sampler

Posterior
p(θ | s

obs 
)

… 

Figure 1. Schematic diagram of our inverse modeling
method. MARGE generates a data set based on a deter-
ministic, forward process (e.g., RT) and trains a surrogate
model to approximate that process. Using the trained sur-
rogate, HOMER infers the inverse process (e.g., atmospheric
retrieval) by simulating many forward models and compar-
ing them to the target data (e.g., an observed spectrum) in
a Bayesian framework.

large data set encompassing the parameter space where

the NN will be applied. We have therefore developed

the Machine learning Algorithm for Radiative transfer of

Generated Exoplanets2 (MARGE), which (1) generates

a specified number of atmospheric models within some

parameter space and computes their emission spectra,

(2) processes the generated data, and (3) trains, vali-

dates, and tests a user-specified NN architecture on the

generated data set (Figure 1). The software package al-

lows independent execution of any of the three modes,

enabling a wide range of applications beyond exoplanet

retrieval.

At present, MARGE generates data using a modified

version of the Bayesian Atmospheric Radiative Trans-

fer code (BART, Harrington et al. 2020; Cubillos et al.

2020; Blecic et al. 2020), though it is designed to easily

use other software packages for this purpose. BART’s

Bayesian sampler is the Multi-core Markov chain Monte

Carlo (MCMC) code (MC3, Cubillos et al. 2017). We

have extended MC3 with a random uniform sampler

to generate collections of forward models. BART’s RT

package, transit, handles the calculation of emission

spectra.

We implement NN model training in Keras (version

2.2.4, Chollet et al. 2015), using Tensorflow (version

1.13.1, Abadi et al. 2016) for the backend. MARGE

enables early stopping by default to prevent overfitting,

2 MARGE is available at https://github.com/exosports/marge

and the user can halt or resume training. MARGE al-

lows for cyclical learning rates for more efficient training

(Smith 2015). Users specify the model architecture de-

tails and the data location, and the software handles

the data normalization, training, validation, and test-

ing. MARGE pre-processes the data into Tensorflow’s

TFRecords format for efficient handling. Users have

multiple options when pre-processing the data, which

include taking the logarithm of the inputs and/or out-

puts, standardizing the data according to its mean and

standard deviation, and/or scaling the data to be within

some range. The mean and standard deviation of the

data set are computed using Welford’s method (Welford

1962) to avoid the need to load the entire data set into

memory at once. MARGE computes the root-mean-

squared error (RMSE) and coefficient of determination

(R2) for predictions on the validation and test sets to

evaluate model performance. Finally, users may specify

cases from the test set to plot the predicted and true

spectra, with residuals (e.g., Figure 2).

2.2. HOMER

The Helper Of My Eternal Retrievals3 (HOMER),

utilizes a MARGE-trained model in place of BART’s

transit RT code (Figure 1). HOMER currently uses

MC3 for its Bayesian sampler. The user specifies data,

uncertainties, observational filters, a parameter space,

and a few related inputs, which are passed to MC3

to perform the inference. A graphics processing unit

(GPU) calculates spectra, though the central process-

ing unit (CPU) can do this at the cost of increased

runtime. For each iteration of the MCMC, the trained

NN predicts spectra for the proposed input parameters,

which are modified as necessary (de-scale, de-normalize,

divide by the stellar spectrum, unit conversions, etc.)

and integrated over the observational bandpasses. MC3

determines convergence of parallel chains via the test of

Gelman & Rubin (1992). HOMER produces plots of the

1D marginalized posteriors, 2D pairwise posteriors, and

parameter history traces. To estimate the accuracy of

credible regions, HOMER calculates the steps per effec-

tive independent sample (SPEIS) and effective sample

size (ESS) as described in Harrington et al. (2020). For

easy comparison with other retrieval results, HOMER

can also overplot the 1D and 2D posteriors for multiple

MCMC runs (e.g., Figure 3). HOMER computes the

Bhattacharyya coefficient (Bhattacharyya 1943; Aherne

et al. 1998) to compare the similarity of 1D marginalized

3 HOMER is available at https://github.com/exosports/homer

https://github.com/exosports/marge
https://github.com/exosports/homer
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Table 1. Forward Model Parameter Space

Parameter Minimum Maximum

log(κ) -5.0 1.0

log(γ1) -2.0 2.0

log(γ2) -1.3 1.3

α 0.0 1.0

β 0.5 1.3

log(H2O) -13 -0.5

log(CO2) -13 -0.5

log(CO) -13 -0.5

log(CH4) -13 -0.5

posteriors, where a value of 0 indicates no overlap and

a value of 1 indicates identical distributions.

3. METHODS

We first generate emission spectra across the retrieval

parameter space (Table 1). We use the five-parameter

temperature–pressure profile, T (p), parameterization of

Line et al. (2013): κ, the Planck mean infrared opac-

ity; γ1 and γ2, the ratios of the Planck mean visible and

infrared opacities for each of two streams; α, which con-

trols the contribution of the two streams; and β, which

represents albedo, emissivity, and energy recirculation.

We also include a free parameter for the uniform verti-

cal abundance profiles of H2O, CO2, CO, and CH4. We

allow a wide range of values without regard for physical

plausibility, except by enforcing that (1) the H2/He ra-

tio remains constant, (2) the total relative abundances

of molecules in the atmosphere equals 1, and (3) the

T (p) profile does not exceed the temperature range of

the line lists. For example, this could lead to models

with H2O at conditions where it dissociates (Arcangeli

et al. 2018), though such models would be rejected with

a high probability in the case of HD 189733 b.

For opacities, we use HITEMP for H2O, CO, and

CO2 (Rothman et al. 2010), HITRAN for CH4 (Roth-

man et al. 2013), and collision-induced absorptions of

H2-H2 and H2-He (Borysow et al. 2001; Borysow 2002;

Abel et al. 2012; Richard et al. 2012). While there are

newer line lists available with a greater number of lines,

these tests are meant to demonstrate consistency be-

tween BART and HOMER; we therefore use the setup

described in Harrington et al. (2020), which uses this set

of line lists to compare with previous studies.

To train our NN surrogate model, we generate 315,626

spectra, which are subdivided into 227,736 (∼70%)

for training, 61,811 (∼20%) for validation, and 26,079

(∼10%) for testing. Model parameters come from the

uniform distribution bound by the limits listed in Table

1. Each spectrum spans 280 – 7100 cm−1 at a resolution

of 0.25 cm−1 and corresponds to the planet’s emitted

flux in erg s−1 cm−1. We normalize the data by taking

the logarithm of the target output values, standardizing

the data by subtracting the training mean and divid-

ing by the training standard deviation, and scaling the

data based on the standardized training set extrema to

be in the range [-1, 1]. The NN model’s hidden layers

consist of Conv1d(64) – Dense(4096) – Dense(4096) –

Dense(4096), with ReLU activation functions for each

hidden layer. The Dense output layer has 27,281 nodes,

corresponding to the emitted spectrum over the defined

wavenumber grid. We train with a batch size of 256

using a mean squared error loss function, the Adam op-

timizer, and early stopping with a patience of 20 epochs

based on the validation loss. We employ a cyclical learn-

ing rate that increases from 10−4 to 10−3 over 4 epochs,

then decreases over the same window. During each com-

plete cycle (8 epochs), the maximum learning rate de-

cays by half the difference between the maximum and

minimum learning rates. The boundaries were chosen

according to the method described in Smith (2015), ex-

cept that we consider the loss instead of accuracy. To

evaluate the model’s performance, we compute RMSE

and R2 between the normalized data and the predic-

tions.

Following the setup of Harrington et al. (2020), we

perform a retrieval of the dayside atmosphere of HD

189733 b based on the measurements by the Hub-

ble Space Telescope Near Infrared Camera MultiOb-

ject Spectrograph (Swain et al. 2009); Spitzer Space

Telescope Infrared Spectrograph (IRS Todorov et al.

2014); Spitzer InfraRed Array Camera (IRAC) chan-

nels 1 and 2 (Knutson et al. 2012); IRAC channel 3,

IRS 16 µm photometry, and Multiband Imaging Pho-

tometer for Spitzer (Charbonneau et al. 2008); and
IRAC channel 4 (Agol et al. 2010). We use a K2 solar-

abundance Kurucz stellar model for the host star’s emis-

sion (Castelli & Kurucz 2003). Using the differential

evolution with snooker updating algorithm of ter Braak

& Vrugt (2008), 2,000,000 iterations are spread across

10 parallel chains, with a burn-in of 5000 iterations per

chain.

For this investigation, we focus on MARGE+HOMER

as a faster replacement for an analytical retrieval code;

we therefore only compare the results of HOMER and

BART here. For a discussion of these results in the

context of previous retrievals of HD 189733 b’s dayside

atmosphere, see Harrington et al. (2020).
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Table 2. Model Evaluation

Metric Minimum Median Mean Maximum

RMSE 0.0046 0.0061 0.0066 0.0382

R2 0.9918 0.9998 0.9997 0.9999

4. RESULTS & DISCUSSION

Table 2 details the normalized RMSE and R2 met-

rics for the MARGE-trained model on the test set. The

small RMSE and R2∼1 indicate an accurate model for

RT over the parameter space. Figure 2 shows example

comparisons between the spectra predicted by MARGE

and true spectra calculated with transit. While residu-

als tend to be around 5%, they fluctuate around 0; when

band integrated over the observational filters, these er-

rors effectively cancel. There are occasionally regions

where the spectrum is consistently over- or underesti-

mated (e.g., near 7000 cm−1 in the left panel of Fig-

ure 2), thereby introducing error in the band-integrated

value. However, the small deviations appear to have

little effect on this retrieval’s result.

When applying HOMER to the emission spectrum of

HD 189733 b, the results are consistent with BART.

The retrieved T (p) profiles (Figure 3, right panel) agree

in the regions probed by the observations. They devi-

ate in the lower atmosphere, where little to no signal

is measured, as determined by the contribution func-

tions (Figure 10, top right panel, of Harrington et al.

2020). By nature, HOMER cannot calculate contribu-

tion functions, as the MARGE model does not solve RT.

We could have included contribution functions for each

case in the training set, but this would require signifi-

cantly more compute resources. Computing the contri-

bution functions for the single best-fit case using the RT

code that trained MARGE is much faster.

Table 3 compares HOMER’s retrieved 68.27% (“1σ”),

95.45% (“2σ”), and 99.73% (“3σ”) credible regions with

BART’s retrieved credible regions (Harrington et al.

2020). While the 68.27% regions for CH4 and CO dis-

agree by a noticeable amount, the 95.45% and 99.73%

regions are in close agreement. This is due to the er-

rors in the NN model as well as the mostly-flat na-

ture of the posterior for those parameters (Figure 3,

left panel). Table 4 compares the SPEIS, ESS values,

and associated uncertainties in the 1, 2, and 3σ credible

regions for HOMER and BART; their values differ by

∼10%, attributable to randomness among the sampler’s

chains. The Bhattacharyya coefficients between the 1D

marginalized posteriors of HOMER and BART indicate

agreement in the range 97.74 – 99.74% (Table 5).

HOMER’s accuracy is, by nature, bound by the accu-

racy of the NN model. Model inaccuracies may slightly

bias the results, as seen in the small peak near -4 for CH4

present in HOMER’s posterior but not BART’s. This

discrepancy will shrink as NN model accuracy improves

and does not significantly affect the scientific conclusions

at the spectral resolution of these observations for the

current NN accuracy.

For the architecture presented here, MARGE predicts

each spectrum in ∼0.0002 seconds on an NVIDIA Ti-

tan Xp, compared to ∼0.006 seconds on an Intel i7-4770

– a ∼30× speedup. The combination of MARGE +

HOMER required under 400 CPU hours (mostly spent

on data generation and NN model training), compared

to BART’s ∼360 CPU hours. While additional re-

trievals with BART within this parameter space would

take a similar length of time, additional retrievals with

HOMER using a GPU would require ∼0.6 CPU and

GPU hours – a ∼600× speedup. Further, if using a

GPU, retrievals with HOMER can utilize hundreds of

parallel chains. Additional chains enable faster explo-

ration of the parameter space, and, if executed for the

same number of iterations per chain, increases the ESS,

which reduces the uncertainty in the bounds of cred-

ible regions (Harrington et al. 2020). While BART’s

compute cost scales linearly with the number of chains

for a given number of iterations per chain, HOMER’s

does not. For example, using 64 chains instead of 10 re-

quires ∼4.6× as much compute time, compared to 6.4×
as much for BART. Thus, the combination of MARGE

and HOMER saves valuable compute resources when

performing multiple retrievals over a similar parameter

space.

5. CONCLUSIONS

This paper presents a novel technique for ML retrieval

that uses an NN model of RT within a Bayesian frame-

work to reduce the runtime of a retrieval. Our open-

source codes, MARGE and HOMER, provide the com-

munity with an easy-to-use implementation of this ap-

proach.

Our method enables fast retrievals that are consis-

tent with traditional, analytical retrieval algorithms.

The approach circumvents limitations of current ML

retrieval models by using an RT surrogate in place of

the analytical RT code found in traditional retrieval

algorithms, thereby preserving the accuracy of the

Bayesian inference. On our hardware, HOMER achieves

a ∼600× speedup in performing a retrieval that yields

1D marginalized posteriors that overlap with >97.7% of

BART’s posteriors for the case of HD 189733 b. This

reduction in compute time justifies using more realistic
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Figure 2. Two comparisons of MARGE and transit spectra. The smoothed curves use a Savitzky-Golay filter with a third-
order polynomial across a window of 101 elements (25 cm−1). The purple color arises due to a detailed match between the
red and blue spectra lines. For the residuals, a black line is plotted at 0 to show regions where the NN consistently over- or
underpredicts the spectrum. A histogram of the residuals appears to the right of the residual scatter plot, where the x-axis
shows the probability density function (PDF) for the range of residual percentages. Left: case with mainly absorption. Inset
plot shows a zoomed-in region. Right: case with emission and absorption.

Table 3. Retrieved Credible Regions

Log Parameter Code 68.27% 95.45% 99.73%

H2O HOMER [-2.1, -1.1] [-2.4, -0.6] [-2.7, -0.5]

BART [-1.9, -0.8] [-2.3, -0.5] [-2.6, -0.5]

CO2 HOMER [-2.6, -1.7] [-2.9, -1.3] [-3.2, -0.9]

BART [-2.5, -1.5] [-2.8, -1.1] [-3.2, -0.7]

CO HOMER [-4.4, -0.5] [-12.4, -0.5] [-12.9, -0.5]

BART [-6.6, -0.5] [-12.0, -0.5] [-12.9, -0.5]

CH4 HOMER [-11.8, –7.2] ∪ [-5.0, -3.6] [-12.8, -3.5] [-13.0, -2.7]

BART [-11.7, -5.5] [-12.9, -3.7] [-13.0, -2.6]

Table 4. Credible Region Accuracy

Code SPEIS ESS 1σ Uncertainty 2σ Uncertainty 3σ Uncertainty

HOMER 537 3631 0.772% 0.346% 0.086%

BART 486 4012 0.735% 0.329% 0.082%

(and computationally expensive) RT models. Addition-

ally, 3D retrievals with 180 cells could be completed in

a matter of days.

Our approach is particularly well suited to planning

studies for future observations, telescopes, and instru-

ments, like the James Webb Space Telescope and the

Large UltraViolet Optical InfraRed Surveyor (e.g., Roc-

chetto et al. 2016; Feng et al. 2018). Using a sin-

gle MARGE model trained over the desired parameter

space, HOMER can perform dozens to hundreds of re-

trievals in the time it takes to run a single retrieval with

an RT solver.

More generally, our technique and tools can be ap-

plied to problems beyond the scope of this investigation.

MARGE provides a generalized method to train an NN

to model a deterministic process, while HOMER uses

a MARGE-trained model to infer the inverse process.

MARGE models could be trained for cloud/haze forma-

tion or photochemistry. MARGE and HOMER could

also be used to map gravitationally-lensed galaxies (e.g.,

Perreault Levasseur et al. 2017).

With the plethora of ML retrieval algorithms that

have emerged in recent years, standard data sets should

be created and used for benchmarking. Ideally, such
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Figure 3. Comparisons between HOMER and BART posteriors. Left: Normalized probability density functions (PDF) of the
1D marginalized posteriors retrieved for HD 189733 b. Right: Posterior median, 1σ from the median, and 2σ from the median
T (p) profile.

Table 5. Bhattacharyya Coefficients

Parameter Value

κ 97.87%

γ1 97.74%

γ2 99.74%

α 99.55%

β 98.30%

H2O 98.42%

CO2 97.97%

CO 98.83%

CH4 99.45%

a data set would cover a wide range of wavelengths at

high resolution and include all available opacity sources,

scattering, clouds/hazes, and, in the case of terrestrial

planets, surface properties. This would allow easy com-

parisons among current and future ML retrieval codes.

The Reproducible Research Compendium for this

work is available for download4. It includes all of the

code, configuration files, data, and plots used in sup-

port of this work.
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