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Abstract

Characterizing exoplanetary atmospheres via Bayesian retrievals requires assuming some chemistry model, such as
thermochemical equilibrium or parameterized abundances. The higher-resolution data offered by upcoming
telescopes enable more complex chemistry models within retrieval frameworks. Yet many chemistry codes that
model more complex processes like photochemistry and vertical transport are computationally expensive, and
directly incorporating them into a 1D retrieval model can result in prohibitively long execution times. Additionally,
phase-curve observations with upcoming telescopes motivate 2D and 3D retrieval models, further exacerbating the
lengthy runtime for retrieval frameworks with complex chemistry models. Here we compare thermochemical
equilibrium approximation methods based on their speed and accuracy with respect to a Gibbs energy-
minimization code. We find that, while all methods offer orders-of-magnitude reductions in computational cost,
neural network surrogate models perform more accurately than the other approaches considered, achieving a
median absolute dex error of <0.03 for the phase space considered. While our results are based on a 1D chemistry
model, our study suggests that higher-dimensional chemistry models could be incorporated into retrieval models
via this surrogate modeling approach.

Unified Astronomy Thesaurus concepts: Exoplanet atmospheric composition (2021); Exoplanet atmospheres (487);
Neural networks (1933); Regression (1914); Chemical abundances (224)

Supporting material: figure set

1. Introduction

Improvements in the signal-to-noise ratio and spectral
resolution of exoplanet observations, such as those offered by
the James Webb Space Telescope (JWST), motivate and
enable the use of more sophisticated models to characterize
exoplanetary atmospheres via retrieval (see review by
Madhusudhan 2018). Early retrieval studies made simplifying
assumptions about atmospheric chemistry, such as gas abun-
dances that were constant with altitude or by scaling equilibrium
profiles calculated assuming solar metallicity (e.g., Madhusud-
han & Seager 2009; Line et al. 2014). Later, as new data began
to offer a more detailed picture of exoplanet atmospheres, groups
incorporated more complex chemistry models into retrieval
frameworks, such as (dis)equilibrium abundances for sub- and
supersolar metallicities (e.g., Oreshenko et al. 2017; Mollière
et al. 2020; Chubb & Min 2022).

Many exoplanet atmospheres are likely in disequilibrium
(Moses et al. 2011, 2013b; Line & Yung 2013; Venot et al.
2015; Roudier et al. 2021). Stevenson et al. (2010) presented the
first detection of disequilibrium chemistry in an exoplanet
atmosphere, finding CH4 depleted relative to thermochemical
equilibrium calculations. More recent studies considering
disequilibrium processes, such as photochemistry and vertical
quenching, have found evidence of disequilibrium in multiple
hot Jupiter atmospheres (e.g., Mollière et al. 2020; Kawashima
& Min 2021; Roudier et al. 2021), while Changeat et al. (2022)

found that some hot Jupiter spectra measured by the Hubble
Space Telescope are not well fit by equilibrium chemistry
models. While these recent studies still find some equilibrium
models consistent with the data, JWST will provide
sufficient precision to more definitively differentiate between
equilibrium and disequilibrium atmospheres (Blumenthal et al.
2018). Furthermore, JWST’s early-release science data for
WASP-39b have led to the detection of SO2, likely a product
of photochemistry, providing additional motivation for
more complex chemistry models within retrieval algorithms
(Alderson et al. 2023; Rustamkulov et al. 2023).
Both the more detailed measurements of JWST and future

telescopes and the recent results from 1D retrieval studies
motivate more complex retrieval models. While the findings of
Blecic et al. (2017) show that 1D retrieval models can recover a
thermal profile comparable to the 3D structure’s arithmetic
average, Caldas et al. (2019) and Pluriel et al. (2022) found
biases in the retrieved gas abundances. A more complete
understanding of the atmospheric chemistry thus requires a 2D
or 3D model to properly capture longitudinal variations.
Community efforts are underway to develop such retrieval
codes, though the computational costs associated with the
increase in dimensionality require simplifying assumptions
(e.g., Feng et al. 2020; Irwin et al. 2020; Changeat et al. 2021;
Cubillos et al. 2021; Challener & Rauscher 2022; Chubb &
Min 2022). With 1D retrievals requiring on the order of
105–106 forward model evaluations (Madhusudhan 2018), the
difference of 1 s per forward model evaluation adds up to days
of computing time, and higher-dimensional models multiply
this further. While any chemistry model could be incorporated
into a retrieval framework, the additional computational time of
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some models can be prohibitive, such as the Atmos
photochemical-climate model (Arney et al. 2016) and the free
molecular retrieval setup discussed in Chubb & Min (2022).

Recently, Himes et al. (2022) presented a novel machine-
learning approach to exoplanet atmospheric retrieval, where the
radiative transfer forward model is replaced with a neural
network (NN) surrogate model. We found that this approach
achieves similar quantitative results as the classical approach
but at a fraction of the computational cost. Similar results have
been reported for other scientific problems using similar
approaches (e.g., Gilmer et al. 2017; Brehmer et al. 2018;
Baydin et al. 2019; Munk et al. 2019; Kasim et al. 2021).

In this study, we seek to determine a generalized method that
can accurately approximate a given chemistry model, such that
computationally expensive chemistry models could be included
within a retrieval of any dimensionality. To investigate this, we
compare thermochemical equilibrium estimation methods and
consider each approximation’s applicability to retrieval based
on runtime and accuracy. In Section 2, we describe the
analytical, interpolation-based, and NN-based models consid-
ered and detail our methodology. In Section 3, we present and
discuss the results. Finally, we draw conclusions in Section 4.

2. Methods

We utilize four equilibrium estimation methods: minimiza-
tion of the Gibbs free energy via the Thermochemical
Equilibrium Abundances (TEA) code (Blecic et al. 2016), the
analytical approximation for equilibrium used in the Reliable
Analytic Thermochemical Equilibrium (RATE) code (Cubillos
et al. 2019), interpolation within a grid of models produced by
TEA, and a surrogate model based on an NN trained on data
produced by TEA (using the approach of Himes et al. 2022).

2.1. Equilibrium via Gibbs Energy Minimization

Blecic et al. (2016) presented the open-source TEA code,
which calculates thermochemical equilibrium via minimizing
the Gibbs free energy in a Lagrangian optimization framework.
They demonstrated that TEA reproduces the results of other
thermochemical equilibrium implementations when utilizing
the same thermodynamic data. Here we use TEA to calculate
the “ground-truth” data to compare with the other methods, as
well as the data set used for interpolation and NN surrogate
model training. For more details on TEA’s implementation and
validation, see Blecic et al. (2016).

2.2. Equilibrium via Analytical Formulae

Cubillos et al. (2019) presented the open-source RATE code,
an analytical formalism to approximate thermochemical
equilibrium that built upon and resolved the instability issues
present in the formalism of Heng et al. (2016), Heng & Lyons
(2016), and Heng & Tsai (2016). They determined that the
RATE approximation is valid over a parameter space of
roughly 200–2000 K, 10−8

–103 bar, and 10−3
–102× solar

elemental abundances. These stability improvements enable
broad application to arbitrary combinations of parameters
within this phase space, such as those considered in a Bayesian
retrieval on optical and/or infrared spectra of most observed
exoplanetary atmospheres. For more details on their approach,
see Cubillos et al. (2019).

2.3. Equilibrium via Interpolation

We generate a grid of 74,088,000 points based on pressure,
temperature, carbon-to-hydrogen elemental abundance ratio
(C/H), nitrogen-to-hydrogen abundance ratio (N/H), and
oxygen-to-hydrogen abundance ratio (O/H); the parameter
minima, maxima, and number of uniformly log-spaced samples
are given in Table 1. We consider the same molecules as
Cubillos et al. (2019), with the addition of helium: H2O, CO,
CH4, CO2, HCN, C2H2, C2H4, NH3, N2, H2, H, and He. This
enables direct applicability of the models to gas-giant
atmospheres.
We consider linear and inverse distance weighting (IDW)

interpolation. For IDW, we calculate the Euclidean distance
between the logarithm of the inputs, and we vary the exponent
on the inverse distance, p, between 1 and 40. To interpolate, we
consider the n nearest neighbors along each axis, where n can
vary between 1 and 4. In the interest of the ability to scale the
considered models to higher dimensionalities, we do not
consider spline interpolation due to longer runtimes than TEA
in this setup, likely attributable to the inability to hold this data
set in cached memory. Similarly, we do not consider radial
basis function interpolation due to the amount of memory
required for the necessary N×M×M matrices, where N is the
number of dimensions, and M is the number of data points. For
this problem’s dimensionality, using a data set of 100,000
points—∼0.13% of the total TEA data set considered here—
would require 372.5 GiB of memory to calculate the radial
basis functions in double precision.

2.4. Equilibrium via NN-based Surrogate Model

Himes et al. (2022) presented an NN-based surrogate
modeling method along with a software package, MARGE,
that implements the technique. Here we use MARGE to
approximate TEA.
We use two different data sets to train the NN models: (1) a

grid of TEA models as described in the previous section but
with only 40 temperatures and 11 elemental abundance ratios
(5,324,000 total grid points) and (2) a set of models whose
inputs were randomly drawn from log-uniform distributions
spanning the ranges in Table 1. For data set (1), we randomly
split the grid of TEA models into training, validation, and test
sets, which contain 70%, 20%, and 10% of the total data,
respectively. For data set (2), we make 125,000 random draws
of temperatures, C/H, N/H, and O/H; each of those cases is
computed over the log-uniform grid of pressures defined in
Table 1, producing a total of 12,500,000 combinations of the

Table 1
TEA Model Grid Parameters

Parameter Minimum Maximum Number of Samples

log pressure −8 3 100
log temperature 2.305 3.778 80
log C/H −6.57 −0.57 21
log N/H −7.17 −1.17 21
log O/H −6.31 −0.31 21

Note. The mean abundance values correspond to solar abundance ratios as
reported by Asplund et al. (2009). Temperatures are limited to 200–6000 K by
the available data.
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five free parameters. We randomly split these cases such that
approximately 64%, 16%, and 20% of the cases are in the
training, validation, and test sets, respectively.

Each data case is comprised of the five input parameters
given in Table 1 and the corresponding 12 output gas
abundances. We normalize the data in two subsequent steps
by (1) taking the base-10 logarithm of the inputs and outputs
and (2) scaling the log data to be within the closed interval [−1,
1] based on the training set extrema.

The NN model consists of an input layer with five nodes
corresponding to the five input parameters; a 1D convolutional
layer with a kernel size of 3 and 256 feature maps, which uses a
rectified linear unit (ReLU) activation function; three dense
layers with 4096 nodes, each of which uses ReLU activation
functions; and an output dense layer with 12 nodes corresp-
onding to the output gas abundances. This architecture was
selected through an extensive model grid search. We train
using a batch size of 1024, the mean-squared-error loss on the
validation set, the Adam optimizer, and the triangular2
learning rate policy (Smith 2015; Himes et al. 2022) with a
learning rate cycle of 12 epochs and a range determined from
the range test (see Appendix A of Himes et al. 2022).

Using the aforementioned data sets, we train four NN models
based on the above architecture (Table 2). Model NN1 is
trained for 864 epochs on the grid of TEA models. Model NN2
is trained for 750 epochs on the random data. Model NN3 is
trained for 500 epochs on the random data but sized to match
the gridded data set. Model NN4 is trained for 500 epochs on
the combination of both the grid of TEA models and the
random data. As in Himes et al. (2022), we find that the models
indefinitely improve by minutia and therefore choose to stop
training after the above numbers of epochs, as further training
offers minimal practical improvement.

In training the model to predict equilibrium abundances for a
given pressure, temperature, C/H, N/H, and O/H, this NN
surrogate model can directly predict the molecular abundance
profiles for an atmospheric model with some pressure–
temperature profile and (possibly nonuniform) elemental
abundance ratios. To do so, we normalize the inputs as
described above, make the predictions, and denormalize the
outputs.

2.5. Performance Assessment

We treat TEA as the control. We assess each non-TEA
model by computing (1) the rms error (RMSE), coefficient of
determination (R2), and absolute dex errors (ADEs) over a grid
of temperatures, pressures, metallicities, and C/O, and (2) the
speedup factor compared to TEA. For item (1), we use a grid
similar to that used in Cubillos et al. (2019) but with the
temperature and metallicity grids shifted by a half cell. This
results in metallicities spanning −1.5–2.5 dex and temperatures

spanning 221–5485 K. We also consider the original grid used
in Cubillos et al. (2019) to test the NN performance at the edge
of the phase space.
Note that we compute the ADEs as

∣ ( ) ( )∣ ( )c c= -ADE log log , 110 true 10 pred

where χtrue is the molecular abundance calculated by TEA, and
χpred is the molecular abundance predicted by a given model.
To reduce the multidimensional matrix of ADEs to a single
interpretable value, we tabulate the median ADE for each
model. Additionally, we compute the speedup factors by
averaging over all cases within a grid of temperatures,
pressures, metallicities, and C/O.

3. Results and Discussion

Table 3 summarizes the median RMSE, median R2, median
ADE, and speedup factor relative to TEA for the considered
models over the grid of test cases. Note that for this setup, TEA
required roughly 11.7± 1 s to estimate equilibrium at a given
temperature, C/H, N/H, and O/H over the 100 pressures
considered. In general, we find that all of the considered
models offer orders-of-magnitude reductions in computational
cost compared to TEA while still accurately approximating
TEA over many regions of the phase space. Figure 1 provides
two comparisons between the outputs of one NN model and the
corresponding TEA case. The left panel is representative of
well-modeled situations, showing close agreement between the
NN and TEA for a temperature around 1000 K with solar
metallicity and C/O; the right panel is representative of
difficult situations for the NN to model, with a temperature
around 2000 K with 2.5× solar metallicity and C/O= 0.9.
Figure 2 (and its online figure set) visualizes the model errors
over the considered phase space, as in Cubillos et al. (2019),
but with a different grid of metallicities. Overall, we find that
the NNs more accurately approximate TEA than the other
models over the phase space considered. Visually, the results of
NN2, NN3, and NN4 look similar; consequently, we omit the
figures from NN4, though they are available in the online
compendium (see Section 4).
Though the best linear interpolation model achieves the

lowest median ADE, its RMSE and R2 indicate it to be less
accurate than the best IDW interpolation model, as well as most

Table 2
Training Differences between NN Models

Model Data Set Training Epochs

NN1 Grid of 53,240 TEA models 864
NN2 125,000 randomized TEA models 750
NN3 Randomized, sized to match gridded 500
NN4 Combination of gridded and randomized 500

Note. All TEA models are computed over a grid of 100 pressures.

Table 3
Model Performance Comparison

Model RMSE R2 ADE Speedup Factor

RATE 1.3386 0.9302 0.1002 891
Linear 1.1131 0.9821 0.0037 8330
IDW 0.8314 0.9879 0.0696 2691
NN1 1.4942 0.9613 0.0316 206
NN2 0.4872 0.9967 0.0250 207
NN3 0.4390 0.9973 0.0280 207
NN4 0.6343 0.9950 0.0258 205

Note. Here we present only the best-performing linear and IDW interpolation
models. For each model listed, we present only the median RMSE, R2, and
ADE for conciseness. For the full data set, see the RRC download link at the
end of Section 4. Note also that the speedup factors for the NNs are calculated
for a single atmosphere using the CPU; multiple atmospheric models could be
calculated simultaneously, and/or a GPU could be used for calculations,
increasing the speedup factor.
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of the NNs. This is confirmed via the mean ADEs; the best
linear model’s average error is about 0.38 dex, while the worst
of the NN models features an average error of about 0.33 dex
(NN2 and NN3 are even less, around 0.13 dex). Thus, while the
linear model performs well in many cases (as indicated by the
low median dex error), the cases where it is inaccurate result in
significant relative errors (as indicated by the greater average
dex error). This is confirmed by inspecting the error plots, as
the model generally performs accurately but features significant
errors in certain regions, e.g., for carbon- and oxygen-bearing
species for C/O= 0.9. The interpolation error in nonlinear
regimes could be minimized by more finely sampling in that
region, though this may not be feasible for more computation-
ally expensive chemistry models than considered here.

Based on the calculated metrics, the best-performing linear
and IDW interpolation models are comparable. While linear
interpolation is generally faster than IDW and achieves a lower
median ADE, IDW achieves a lower median RMSE and
slightly higher median R2. Despite this, both models achieve
similar average ADEs of ∼0.38. Table 4 details the
performance of the other linear interpolation models considered
in this investigation, while Table 5 details the performance of
the other IDW interpolation models considered. For simple
linear interpolation, we find that increasing the grid density
leads to improved model performance, as expected. For IDW,
we generally find that the value of the exponent is antic-
orrelated with the ADE. However, at large values for the
exponent, overflow can occur when the tested point is near one
of the grid nodes. We also find that, for a given exponent, the
average ADE is typically minimized when considering the two
nearest neighbors along each axis. While considering only the
nearest neighbor along each axis performs equivalently to or
only slightly worse than the n= 2 case, considering three or
more of the nearest neighbors along each axis performs

significantly worse than in the n= 2 case. This is consistent
with intuition; at n= 1, the interpolated result assumes the
behavior is linear from the closest points, while at n= 2, the
interpolated result factors in the behavior of the closest points
both above and below the target parameters. For n> 2, the
additional neighboring points are farther away and therefore
less likely to follow a linear relation with respect to the point of
interest, resulting in reduced accuracy.
While RATE achieves a greater speedup factor than the

NNs, it is less accurate than those NNs, as indicated by the
other performance metrics. Additionally, the speedup factors
are computed for the NN using the central processing unit
(CPU); on our machine, using an Nvidia Titan Xp graphics
processing unit (GPU) resulted in a ∼4× speedup compared to
using the AMD EPYC 7402P CPU, nearly matching RATE’s
speedup factor. Further, when computing the speedup factors,
we only considered the computation time of the NN for a single
atmospheric model (100 pressure layers), which utilizes only a
fraction of the GPU’s resources. For applications where
multiple atmospheric models can be calculated in parallel
(e.g., a Bayesian retrieval with N parallel chains, a multi-
dimensional retrieval model, or a global circulation model), the
NNs offer further speedup improvements, as their computa-
tional time scales less than linearly (Himes et al. 2022).
Among the NN models, we find that NN3 performs best,

with NN2 and NN4 not far behind. Model NN1, which was
trained on gridded data alone, performs worst among the NN
models. Visually, NN1ʼs error plots feature topography similar
to the interpolation error plots. For example, in Figure 2, at C/
O= 0.9, the interpolation plots feature a region in the
temperature–pressure space with significant error. However,
its errors in these regimes are generally less than the
interpolation approaches despite being trained on a data grid
∼7% the size of the grid used for interpolation. These similar

Figure 1. Two example cases comparing the outputs of one of the NN models with the corresponding TEA outputs. Left: case where the NN’s predictions closely
match the outputs of TEA, at a temperature of ∼1053 K, log C/H of −3.57, log N/H of −4.17, and log O/H of −3.31 over the full range of pressures considered in
Table 1. Right: case where the NN performs less accurately, at a temperature of ∼2112 K, M/H of 2.5, and C/O of 0.9 (log C/H of −0.956, log N/H of −1.556, and
log O/H of −0.910). Despite the less accurate performance, the NN’s predictions are within an order of magnitude of the true values, except for H2O, CO2, and HCN
at the lowest pressures. Only abundances �10−15 are shown for clarity.
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topographies suggest that the model grid is undersampled
in this region. As C/O approaches 1, oxygen-dominated
chemistry gives way to carbon-dominated chemistry
(Madhusudhan 2012; Moses et al. 2013a). Thus, it is likely
that the model error in this regime is due to nonlinear changes
in the chemical abundances, preventing the linear model from
capturing it accurately. This is supported by the fact that the
species lacking carbon and oxygen do not display this
topography (the last five figures in the online figure set
associated with Figure 2), while all carbon- and oxygen-
bearing species bear this topography at varying magnitudes (the
first seven figures in the online figure set associated with

Figure 2. Absolute percent differences between the abundances predicted by the various approximation models and TEA for H2O. Hatched regions indicate where the
molecular abundance is less than 10−10. Top left: RATE. Top right: best-performing linear interpolation model. Middle left: best-performing IDW interpolation model.
Middle right: NN1. Bottom left: NN2. Bottom right: NN3. The complete figure set (12 images) is available in the online journal.

(The complete figure set (12 images) is available.)

Table 4
Linear Interpolation Model Performance Comparison

Number of
Temperatures

Number of
Elemental
Abundances RMSE R2 ADE

Speedup
Factor

40 11 1.4937 0.9623 0.0251 8434
80 11 1.4719 0.9641 0.0127 8518
80 21 1.1131 0.9821 0.0037 8332

Note. For each model listed, we present only the median RMSE, R2, and ADE
for conciseness. For the full data set, see the RRC download link at the end of
Section 4.
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Figure 2). Similarly, NN1ʼs poorer performance at M/H= 2.5
compared to the other NNs is likely also attributable to
undersampling in that regime.

The other NNs, which were trained on random data, do not
feature this topography. Model NN3 was trained on a data set
with ∼7% of the number of cases in the gridded data set used
by the interpolation methods. Despite the same training data
size as NN1 and training for fewer epochs, NN3 outperforms
NN1 according to the performance metrics. This suggests that
NN surrogate models more efficiently learn a problem when the
training data are randomly generated, rather than being
generated on a fixed gridding. Model NN4 utilized both
NN1ʼs gridded data and NN3ʼs random data—the most data
out of any of the NN models. Models NN3 and NN4 were
trained for the same number of epochs, yet despite the
additional data considered by NN4 (which led to a greater
number of training iterations than NN3), NN4 performs worse
than both NN2 and NN3. Model NN4ʼs performance falls
between NN1 and NN2, which, together with NN1ʼs
performance, suggests that the gridded data force the NN
toward a solution that, while optimal for those data, does not
properly generalize to approximate thermochemical equili-
brium in all regimes. Future studies should examine this in
more detail to determine the optimal approach to generating
data to train NN surrogate models.

We additionally considered the NN’s performance at the edge
of the phase space; Figure 3 shows NN2ʼs and RATE’s
predictions for the grid considered in Cubillos et al. (2019) for
H2O and CH4. We find that, unsurprisingly, its accuracy
diminishes near the edges of the phase space. At the metallicity
extrema (3 orders of magnitude above and below solar
metallicity), the NN’s error increases significantly, especially at
the C/O extrema. By comparison, RATE’s accuracy at Z= −3 is

more or less consistent with less extreme metallicities, though it
too becomes inaccurate at Z= 3, as reported in Cubillos et al.
(2019). We attribute the NN’s behavior to its training data set;
when making random draws from the phase space, few samples
will have multiple parameters at the extrema (e.g., both Z= 3 and
C/O= 0.1), resulting in reduced accuracy in that regime. While
this could be addressed by preferentially drawing samples that are
in these regions, doing so would bias the training data and thus
would need to be handled carefully to ensure it does not bias the
trained model. A more straightforward solution would be to
generate data over a larger phase space than needed for the target
application, thus ensuring the model is more accurate at the
extrema of the target phase space.

4. Conclusions

In this study, we presented a comparison between thermo-
chemical equilibrium estimation methods. We found that neural
network (NN) surrogate models outperform both interpolation
approaches considered here, as well as the analytical approx-
imation of Cubillos et al. (2019), which is based on the
formalism of Heng et al. (2016), Heng & Lyons (2016), and
Heng & Tsai (2016). However, all approaches offer orders-of-
magnitude reductions in computational cost compared to the
Gibbs energy minimization implemented in TEA (Blecic et al.
2016). Our results suggest that these thermochemical equili-
brium estimation methods can run fast enough and perform
accurately enough to be used in place of a Gibbs minimization
method for thermochemical equilibrium during retrievals. More
importantly, these fast approximation approaches enable
computationally expensive chemistry models, such as those
considering disequilibrium processes, to be utilized within
models requiring thousands of model calculations, such as
Bayesian atmospheric parameter retrieval from spectra, global
circulation models, etc.
For our application, our results show that NNs trained on

random data outperform the considered interpolation methods
even when the random data set size is ∼7% of the size of the
uniform data set used for interpolation. We also found that
training on a combination of gridded and random data results in
a less accurate NN than training on only the random data, even
when trained for more iterations. This finding is consistent with
previous studies in the literature that showed that random
sampling outperforms uniformly sampled grids when trying to
approximate some forward model (Loyola et al. 2016; Fisher &
Heng 2022). While this suggests that gridded data are less
effective at training NNs compared to random data, a future
study that more thoroughly investigates this behavior is
necessary to determine this definitively.
When considering interpolation within a fixed grid, we found

that interpolation error significantly increases in regimes of
nonlinear behavior, such as C/O ∼ 1. We thus recommend that
investigators utilizing a grid-based interpolation approach
verify that the interpolation is sufficiently accurate across the
phase space of application. While a more finely sampled grid
will reduce this error, the increased number of models would
similarly benefit the NN approach. Based on our finding that
the NN outperformed grid interpolation when considering a
smaller gridded data set than the interpolation approaches, it is
likely that the NN approach would continue to outperform the
grid approach except at the highest resolutions, where the
nonlinear behavior becomes nearly linear between grid points.

Table 5
IDW Model Performance Comparison

Exponent
Neighbors
per Axis RMSE R2 ADE

Speedup
Factor

1 1 1.1341 0.9830 0.0706 15,190
2 1 1.0780 0.9799 0.0619 15,250
2 2 1.0795 0.9802 0.0650 2763
2 3 5.6737 0.3177 0.0809 886
3 1 1.0068 0.9803 0.0650 15,000
5 1 0.8495 0.9840 0.0780 14,920
5 2 0.8502 0.9839 0.0722 2716
5 3 5.6693 0.3243 0.0767 841
5 4 7.5990 −0.0859 0.099 3 299
10 1 0.8301 0.9884 0.0781 14,930
10 2 0.8194 0.9886 0.0721 2188
10 3 5.6713 0.3345 0.0741 835
10 4 7.6006 −0.0631 0.099 6 299
20 1 0.8405 0.9877 0.0761 15,160
20 2 0.8322 0.9879 0.0687 2710
20 3 5.6721 0.3344 0.0717 871
30 1 0.8392 0.9877 0.0761 15,020
30 2 0.8314 0.9879 0.0696 2691
30 3 5.6721 0.3343 0.0748 868
40 1 0.8380 0.9876 0.0756 13,680
40 2 0.8316 0.9878 0.0719 2689

Note. For each model listed, we present only the median RMSE, R2, and ADE
for conciseness. For the full data set, see the RRC download link at the end of
Section 4.
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Future work should determine how finely sampled a grid must
be for accurate interpolation across the phase space of interest.

While the NNs performed accurately over most of the phase
space, their accuracies significantly decrease near the edge of
the phase space. Future investigations that seek to train
comprehensive NN surrogate models should keep this in mind
when generating data, as the trained surrogate model may not
be valid at the extrema of the phase space. To account for this,
we recommend generating data over a slightly larger phase
space than required. For situations where physical limits
prevent expanding the phase space, it may be helpful to force
some of the random data to occur at the extrema, that is, fixing
one or more parameters to the extrema and randomly
generating the other parameters. A future study should
investigate this in detail to determine how best to handle this
situation.

The Reproducible Research Compendium (RRC) for this
work is available for download at 10.5281/zenodo.7783281.
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