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Abstract

Super-resolution techniques aim to increase the resolution of images by adding de-
tail. Compared to upsampling techniques reliant on interpolation, deep learning-based
approaches learn features and their relationships across the training data set to leverage
prior knowledge on what low resolution patterns look like in higher resolution images. As
an added benefit, deep neural networks can learn the systematic properties of the target
images (i.e. texture), combining super-resolution with instrument cross-calibration. While
the successful use of super-resolution algorithms for natural images is rooted in creating
perceptually convincing results, super-resolution applied to scientific data requires careful
quantitative evaluation of performances. In this work, we demonstrate that deep learn-
ing can increase the resolution and calibrate space- and ground-based imagers belonging
to different instrumental generations. In addition, we establish a set of measurements to
benchmark the performance of scientific applications of deep learning-based super-resolution
and calibration. We super-resolve and calibrate solar magnetic field images taken by the
Michelson Doppler Imager (MDI; resolution ~ 2" /pixel; science-grade, space-based) and the
Global Oscillation Network Group (GONG; resolution ~ 2.5” /pixel; space weather opera-
tions, ground-based) to the pixel resolution of images taken by the Helioseismic and Magnetic
Imager (HMI; resolution ~ 0.5” /pixel; last generation, science-grade, space-based).

Super-resolution (SR) is an image processing technique that aims to increase the resolution
of an image by adding sub-pixel detail.! The information used for adding detail can come from
sub-pixel shifts provided by sequences of images (frequency domain), or by a good understanding
of the degradation processes, including blurring, that cause the loss of detail (i.e., atmospheric
seeing, point spread function, etc.)! In the case of applications with sufficient and representa-
tive low (LR) and high-resolution (HR) samples, context can provide an additional source of
information (i.e., the knowledge that all LR images belong to a specific category). convolutional
neural networks (CNNs) are especially suited for this type of application due to their ability
to empirically map the underlying connections between an image pixel and those surrounding
it.2 Furthermore, neural networks can learn features and feature relationships that are inherent
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Figure 1: Overview of ground (G) and space-based (S) observations of the Sun. The
top panel shows the pixel size in arc seconds, and the operation time span of eight different
instruments. The bottom panel shows the variation of the mean sunspot number over the last
50 years. To date, the Helioseismic and Magnetic Imager (HMI), on board the Solar Dynamic
Orbiter (SDO), provides the highest resolution full disk magnetograms. This is followed by the
512 channel magnetograph of the Kitt Peak Vaccum Tower (KPVT) and the Synoptic Optical
Long-term Investigations of the Sun (SOLIS) by the National Solar Observatory (NSO), the
CCD spectromagnetograph (SPMG), the Michelson Doppler Imager (MDI) on board the Solar
and Heliospheric Observatory (SOHO), the Global Oscillation Network Group (GONG), the
Mt. Wilson Observatory, and finally the Wilcox Solar Observatory.

to the data domain as a whole. For example, human faces typically have a nose underneath
two eyes and above a mouth; meaning that pixels near the center of a low-resolution image
of a human face can be safely assumed to constitute a nose.?> The majority of applications of
CNNs to super-resolution involve the super-resolution of natural images (i.e., images with three
color channels representing red, green, and blue). These approaches focus on a super-resolution
outcome that is tailored for human visual perception. In other words, their objective is the
production of images that look right to the human observer.*

Deep learning applications of super-resolution to the physical sciences have tremendous
potential due to their ability to simultaneously super-resolve (add scientifically accurate detail
to images) and cross-calibrate (correct systematic differences between instruments). However,
scientific images have a significantly larger dynamic range than natural images (each image pixel
can assume real values spanning several orders of magnitude) and the generation of perceptually
correct images is not a sufficient outcome because their use typically involves precise numerical
calculations that are quantitatively more sensitive than measuring perceptual quality. Our work
has three main objectives: (1) to demonstrate that a deep learning approach can leverage the
information present in astronomical images with the goal of adding detail to low resolution
images while maintaining their scientific accuracy; (2) to show how super-resolving a scientific
image via deep learning also homogenizes instrument systematic properties, (3) to establish a
set of quantitative performance measurements that can be used to benchmark the performance
of different super-resolution algorithms for astronomical images, as well as to benchmark the
performance of future applications of super-resolution to the physical sciences.



1 Solar Magnetogram Calibration: an outstanding problem for
50 years

Over the last 50 years, space- and ground-based instruments have mapped the solar surface mag-
netic field (Figure 1). These images, known as magnetograms, have significantly advanced our
understanding of solar magnetism,® understanding of the solar corona,® and prediction of space-
weather events.” Magnetograms are constructed from measurements of spectral polarization®
and are thus obtained solving an ill-posed problem. Despite the wealth of archival data, differ-
ences in resolution, spectral inversion techniques, instrument noise levels, or other instrument
properties prevent us from easily combining data across instruments to study small-scale mag-
netic field structures over multiple solar cycles (Figure 1).? Unlike traditional cross-calibration
techniques such as pixel-to-pixel comparison,'? histogram equalization'! or harmonic scaling,'?
our results indicate that deep learning can leverage all the information and context present in
magnetograms. This allows us to encode the structure of the magnetic field in a lower dimension
latent space and then map magnetograms from one instrument to the other.

Previous deep learning approaches relied on physics-based models to simulate high-resolution
magnetograms to use as ground truth.? Other deep learning approaches super-resolved a down-
scaled version of the same instrument.'® The novelty in our approach is that we use deep learning
to cross-calibrate and super-resolve across different instruments. We cross-calibrate and super-
resolve line-of-sight (LOS) magnetograms from the Michelson Doppler Imager (MDI; ~ 2" /pixel;
science-grade, space-based) on board the Solar and Heliospheric Observatory (SoHO),'* as well
as LOS magnetograms taken by the National Solar Observatory’s (NSO) Global Oscillation
Network Group (GONG; ~ 2.5” /pixel; space weather operations, ground-based)® to the ~
0.5” /pixel resolution of magnetograms taken by the Helioseismic and Magnetic Imager (HMI,;
last generation, science-grade, space-based) on board the Solar Dynamics Observatory (SDO).

2 Quantities to Assess Physical Properties of Super-Resolved
Magnetograms

Compared to natural images, which often consist of three color channels with integer pixel
values, line-of-sight measurements of the magnetic field of the Sun measure spectral signatures
from which the magnetic field strength is estimated. As such, each pixel value describes the
strength of the magnetic field which is now a signed quantity and not constrained to a maximum
value. Given that the Sun is a 3-dimensional object projected onto a 2-dimensional image,
measurements around the limb show larger projection effects than those closer to the center of
the solar disk.

To measure the performance of any super-resolution or cross-calibration operation of solar
magnetograms, it is essential to approach them as scientific measurements rather than stan-
dard images. We propose to use the following quantities to compare performances of super-
resolution/cross-calibration approaches. Note that these quantities are post-mortem measure-
ments that, we believe, should be reported for any super-resolution/cross-calibration methods
of solar magnetograms. However, they can be easily adapted to other astronomical data.

We denote Ei,j,n as the super-resolved magnetic field at pixel (7,j) and patch n; and we
denote B j, the ground truth target magnetic field value for the corresponding patch and at
the same location. Each patch n, unless specified otherwise, refers to an area of 128 x 128 pixels,
corresponding to 1/1024 of a full disk HMI magnetogram.

e Correlations: We follow reference!® and measure how super-resolved magnetograms are
cross-calibrated to their high resolution counterpart by measuring the Pearson correlation
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where B and B is the average ground-truth and super-resolved magnetic field across all
pixels and patches. p takes value between 0 and 1. The larger p the better is the cross-
calibration of the super-resolved magnetograms to their high-resolution counterpart.

Signed flures: Magnetic fields are divergence free: the integration of the radial magnetic
field over the solar surface sums to zero. On a full disc, positive or negative biases in
signed fluxes would violate the zero divergence of the solar magnetic field. To evaluate
how a super-resolution technique conserves the signed flux, we calculate the signed flux
of a pixel by converting the line-of-sight field into radial field and correcting for area
foreshortening.:

l
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FEzxtreme values: Regions with extreme values of magnetic field occupy areas that are
smaller than the area covered by a pixel of a magnetogram with the resolution of MDI or
GONG. Therefore, the ability of a super-resolution technique to generate these sub-pixel
extreme values is of special interest, particularly for the study of sunspots and active re-
gions. Moreover, extreme values of the magnetic field have low frequency. Therefore, they
may be difficult to be captured by a super-resolution technique that learns its predictions
from data with limited number of occurrences of extreme values. To measure the ability
of a super-resolution technique to reproduce the tail of the distribution of magnetic field,
we compute the absolute difference between the minimum/maximum magnetic field over
each 128 x 128 patch n:

maxr __
B =
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and

Emn — ‘min B, — (4)
Gradients: The filling factor or ratio of the area occupied by the magnetic field to the
total area is smaller at high resolution than at low resolution. That is, large magnetic
field values occupy smaller area in high resolution magnetograms than in lower resolution
magnetograms. Pixel-level gradients of magnetic field values can quantify variations of
the magnetic field around a low-resolution pixel. It also helps to evaluate how a super-
resolution technique captures polarity inversion and defines boundaries between positive

and negative regions. We compute Ef jn @S the (i, ) pixel of the image gradient of the

difference B, — B,, between the predicted and true magnetograms of patch n:

Ei‘q,jn = Q(Bn — By)ij, where (5)
7] - \/gx +gy )ij, with (6)

is the (,7) pixel of the output image of the Sobel operator g on image I. G, and G, are
3 x 3 kernels, that convolve an image to produce the smoothed finite difference on the x
and y image dimensions respectively.
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Figure 2: Example of the resolution differences between an input magnetogram
(MDI/GONG), the deep learning output and the target (HMI). The insets show a
128128 patch with clear resolution differences between the model inputs (MDI, and GONG)
and the model target (HMI). All panels show nearly simultaneous measurements made by
GONG, MDI, and HMI, on 2011-March-14.

To measure the performance of super-resolution, we compute the signed flux and extreme
values at small spatial scales using patches of size 4 x 4, 8 x 8, 16 x 16 and 32 x 32 pixels.
In addition, we also calculate the Pearson correlation as a function of magnetic field strength
and location on the surface of the Sun. This allows us to understand how the performance of
any super-resolution technique applied to the solar magnetic field depends on spatial scale and
strength of the magnetic field.

3 Results

Figure 2 shows full disk images of our input data (top row) and the best results of our deep
learning super-resolution network (bottom row). The insets show one of the 1024 patches
used to split up the Sun during training. These results were achieved with a loss function
that features a combination of differentiable physics-informed terms including the mean square
error (MSE), magnetic field gradients, pixel histograms, and self-similarity penalties. More
information on the loss function can be found in the Supplementary Information. The super-
resolved full disk magnetograms of MDI and GONG have noise levels, texture, and relative
magnetic field intensity akin to those of the HMI target. Zooming in closer, the insets show
higher-resolution structures for the model’s outputs, which better match those of the HMI
target. The improvement is especially significant for GONG, with a striking difference in small-
scale structures between the input and output patch.
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Figure 3: Comparison of the same area of a magnetogram on 2011-March-14 for the
input, target and deep learning output with different loss functions. The top two
rows show MDI magnetograms as input, the bottom two rows show a comparison for conversion
of GONG magnetograms.

3.1 Baseline

To benchmark our machine learning approach, we compare against a bicubic upsampling base-
line. Bicubic upsampling interpolates only the information contained in the low resolution
image, and does not add new information to the higher resolution counterpart.

We follow the method presented in'® and apply a cross-calibration factor to MDI and GONG.
We perform a linear regression of low resolution magnetic fields (MDI or GONG) against high
resolution magnetic field (HMI) of the form MDI/GONG = a + bx HMI. We find that b = 1.3!
for MDI and b = 0.7 for GONG. We construct our baseline by bicubic upsampling and then,
scaling of MDI by 1/1.3 and GONG by 1/0.7.

In addition to our baseline, we also compare our work to results achieved with the same
neural network but employing a loss function that is only based on the mean squared error
of the deep learning output and target. This allows us to highlight the need for including
physics-informed terms in the loss function when handling scientific data.

3.2 Ablation Study — Optimization Penalty Terms
3.2.1 Visual Comparison

Figure 3 compares super-resolved magnetograms obtained with different loss functions to the
input (MDI/GONG), the target (HMI), and our bicubic upsampling baseline. The first row
(third row) in Figure 3 shows the same patch of the Sun with MDI (GONG) as input. The
second and last row show the calculated difference between the up-sampled magnetograms and
the target. The input patches consists of 32 x 32 pixels, while the target and deep learning
output measure 128 x 128 pixels.

116 finds a value of b = 1.4, but their regression uses uniform weight across all inputs. Instead, we bin the low
resolution magnetic field and weight each input by the fraction of points that fall into the bin the input belongs
to. A weighted regression balances the impact of low and high magnetic field.



Starting with our baseline, the bicubic up-sampled MDI magnetogram still shows the salt-
and-pepper like noise structure that is present in the MDI input in the lower left corner of the
magnetogram patch. This is because simple upsampling techniques extrapolate the magnetic
field, including its noise, to the higher resolution image. Moreover, bicubic upsampling cannot
leverage the information present in the whole dataset of magnetograms. When bicubic upsam-
pling GONG, edges around active regions become sharper, but the large, patch-like features do
not increase in detail.

Using our deep learning model with a simple mean squared error loss removes the noise floor
of the MDI input image. In addition, we start to recover small-scale features in and around
active regions. Adding optimization penalty terms to the MSE loss modifies details in the high
resolution reconstructions. It also visibly reduces the characteristic size of the structures in the
difference images. We see this as evidence that the additional loss terms allows the CNN to
better capture the structure of the target magnetic field. However, purely visual inspection of
the images is not enough to find significant differences or distinguish which loss function is best
at recovering high resolution features.

3.2.2 Quantitative Comparison

Figure 4 is an ablation study that compares the effect of each component included in the loss
function on the reconstruction of the magnetic field. We compare performances by evaluating
the post-mortem quantities introduced in section 2 and calculate (a) differences in extreme
magnetic field values, (b) the Pearson correlation coefficient, (c) differences in image gradients,
and (d) differences in the signed flux of the target and deep learning output magnetograms. All
metrics are calculated on a pixel-to-pixel basis across our test set, which contains approximately
1 million patches for MDI and 8 million patches for GONG. Figure 4 shows the results obtained
for MDI input magnetograms.

As mentioned above, a simple MSE loss succeeds at creating visually pleasing magnetogram
outputs that show a higher level of detail than the input magnetograms (see Figure 3). However,
an objective function based exclusively on MSE is unable to reconstruct extreme values of the
magnetic field (i.e. the strongest positive and negative magnetic fields in a patch) properly as
shown in Figure 4a. Looking at how well extreme values are reconstructed, we observe double
peaks centered around +100 Gauss in the bicubic baseline, and when using an MSE loss. With
MSE alone, the neural network consistently underestimates the magnitude of extreme values,
leading to a peak centered around +100 Gauss as the difference between maximum field values,
and the second peak centered around —100 Gauss as the difference between minimum field
values of the target and the deep learning output.

Including a gradient penalty term in the loss function (indicated in the third row of Figure 4
as MSE + Grad) removes the double peaks and centers the distribution around zero (red line).
Taking image gradients into account is a measure often used in computer vision to improve
edge detection and texture matching.!” For the application to magnetograms, edge detection
aids to define boundaries around active regions, and texture matching helps to recover detailed
features in the high resolution image. Despite these improvements, maximum fields are still
slightly underestimated, as indicated by the fact that the distribution of extreme values is
asymmetrically skewed towards positive values for an MSE + gradient loss function (Figure 4a,
third row).

On average, the sum of the magnetic field values on the surface of the Sun is expected to
be close to zero. Deviations from zero only occur when the leading part of an active region
comes into view of the instrument, and the following cancellation of the magnetic field cannot
be viewed yet. Biases in reconstructing positive or negative fields in the super-resolved magnetic
field would violate important properties of the magnetic field. The histogram penalty (MSE +
Grad + Hist in the fourth row of Figure 4) manages to mostly correct the skewed distribution
of extreme values while also slightly shifting the discrepancies in image gradients (Figure 4c)
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Figure 4: Quantitative comparison of the performance of different loss functions trained
on MDI magnetograms. All loss functions are based on the mean squared error term, plus up
to three additional penalty terms. The shaded histograms correspond to calculations across the test
set for patches within 90% of the solar disk radius. A red vertical line indicates the ideal value for
the corresponding performance metric. The two leftmost columns show calculations performed across
patches of 32 x 32 pixels. The two rightmost columns show calculations performed per pixel in each
patch of the test set. Columns left to right show: 1. added difference between the target and output
maxima and minima per patch. 2. Pearson correlation per patch. 3. Magnitude of the target and output
gradient difference per pixel. 4. the difference in target and output magnetic flux per pixel. To compare
MSE+Grad+Hist+SSIM with the rest, the bottom row is superimposed (non-shaded histogram) on all
other rows. 8



closer to zero.

We improve further performances by adding a similarity penalty term (SSIM, see Suplemen-
tary Information) that forces the model to learn spatial structures of the solar magnetic field
(MSE + Grad + Hist + SSIM in the fifth row of Figure 4).

4 Discussion

Area MDI SR-MDI | GONG SR-GONG
0<r<l1 089  0.93 0.77 0.88
0<r<2/3 091  0.94 0.82 0.90
0<r<1/3 0.90  0.94 0.80 0.88
1/3<r<1/2 | 091 094 0.82 0.90
1/2<r<3/4 | 091 094 0.83 0.90
10G < field | 0.92 094 0.82 0.90
600G < field | 0.97  0.98 0.94 0.97
0 < field < 600G | 0.82  0.88 0.68 0.81

Table 1: Comparison of MDI/super-resolved SR-MDI and GONG /super-resolved
SR-GONG with HMI. The radius of the Sun r is normalized to 1 at the limb. The table
reports the Pearson correlation coefficient between MDI and HMI; and, GONG and HMI. Higher
values are better. To compare with HMI, MDI and GONG images are upsampled as described
in section 2.1. The Pearson correlation coefficient is computed as in (1)

Kernel size Gradient Extreme values
Pizels Gauss Gauss
MDI SR-MDI GONG SR-GONG | MDI SR-MDI GONG SR-GONG
2 4.91 3.38 4.06 3.90 8.07 7.04 8.52 7.92
4 4.92 3.38 4.07 3.91 10.70 10.27 13.18 11.45
8 4.93 3.39 4.08 3.91 16.33 16.51 22.37 18.72
16 4.99 3.40 4.09 3.93 30.64 30.29 42.0 35.39
32 5.06 3.43 4.13 3.96 66.69 61.82 87.74 74.02

Table 2: Quantitative Comparison between MDI/super-resolved SR-MDI and HMI;
and between GONG /super-resolved SR-GONG and HMI. The table reports the average
over patch of size 4 x 4, 8 x 8, 16 x 16 and 32 x 32 over the extreme values and gradient metrics
reported in section 1. To compare with HMI, MDI and GONG images are upsampled as
described in section 2.1.

In this section, we demonstrate the value added of using super-resolved magnetograms over
their lower resolution counterparts. Specifically, we investigate small and large scale structures,
homogenization properties, and temporal patterns of the super-resolved magnetic fields.

4.1 Homogenization

In Figure 5, the first (third) row shows a pixel-to-pixel correlation plot between target mag-
netograms and super-resolution output for the entire test set for MDI (GONG). The test set
contains ~25 (~125) million pixels for MDI (GONG). The orange lines highlight regression
lines between the output and target. To put these results into perspective, Figure 5 also shows



Target Magnetic Field (Gauss)

Target Magnetic Field (Gauss)

Figure 5: 2D Histogram of pixel-to-pixel comparison for test patches of the MDI — HMI
(top two rows) and GONG — HMI (bottom two rows) transformation. Top row: the dashed
line is the average magnetic field output by super-resolutions models, where the average is taken over
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a comparison of the correlation between the bicubic upsampling baseline and the target mag-
netograms (purple graph on the right). Scatter plots (Figure 5) aligning with the 45° degree
diagonal (top) or small residuals (bottom) indicate good cross-calibration. Our deep learning
approach centers the correlation plots more on the 45° degree diagonal, thereby improving the
cross-calibration between MDI (GONG) and HMI. This is clearly visible for GONG (Figure 5,
third row) and less strongly observable for MDI (Figure 5, first row).

Figure 5 suggests great performance of both the bicubic baseline (purple) and our deep
learning approach (orange) when only looking at the correlation plots as both comparisons
are strongly centered around x = y. The second and fourth row in Figure 5 show further
quantitative visualizations of both the cross-calibration and super-resolution showing that
deep learning is more effective at performing super-resolution. We measure this improvement by
investigating the average deviation of the output and target across a 4 x 4 pixel area compared
to the corresponding low resolution pixel.

These results highlight one of the main challenges of finding suitable quantities to capture
super-resolution. When looking simply at averages, it is easy to become overly confident and
misrepresent the quality of results. Our work encourages benchmarking super-resolution tech-
niques with a quantitative assessment that measures the reconstruction of small-scale structures
of the magnetic field. We specifically want to encourage the presentation of results that are not
perfect to accurately communicate the limitations of proposed results.

4.2 Large-scale structures

Table 1 replicates the quantitative assessment in Table 1 and 2 of reference'® and compares the
Pearson correlation coefficient between super-resolved MDI and GONG magnetograms across
different radial regions of the Sun and different values of the magnetic field. For both MDI
and GONG, the Pearson coefficient is computed on our test set of magnetograms from March
2011. Our results show that our deep learning approach generates magnetograms that contains
information present in HMI magnetograms, but not in their low-resolution counterparts. Across
all radial regions and field values, the Pearson correlation coefficient between super-resolved and
HMI magnetograms increases by 5 — 7% relative to the correlation between lower resolution and
HMI magnetograms.

4.3 Small-scale structures

In Table 2, we compare statistics of the magnetic field between HMI and super-resolved MDI/GONG
over kernel of various pixel sizes. We benchmark our results against our baseline approach (bicu-
bic upsampling and linear rescaling). Our results show that the difference in gradient between
HMI and deep learning output over small kernels (2 to 4 pixels) is 30% (for MDI) and 4% (for
GONG) smaller than between HMI and the baseline outputs. Similar improvements are ob-
served for extreme values of the magnetic field within kernel of different sizes. It confirms that
our deep learning super-resolution captures details that are averaged out at lower resolution.
Remarkably, improvements in small-scale patterns extend to structures of size larger than the
upscaling factor (4).

4.4 Time-series of the line-of-sight magnetic field

To understand the quality of homogenization, in Figure 6, we study a 900" x 300" region (located
in the northern hemisphere) during March 2011

We show the input MDI and GONG magnetograms for the last set of data in the test-
set (14:24 UT and 21:24 UT respectively). We also plot the time-series of the signed and
unsigned magnetic field extracted from the test set, and the respective super-resolution and
target magnetograms.

11



Figure 6 shows that our deep learning approach both increases the resolution of the MDI and
GONG data, and cross-calibrates the magnetic field observations with HMI. While the time-
series of the signed magnetic field show good agreement between HMI and super-resolution
MDI, plots of unsigned magnetic field amplify low-level magnetic field values (e.g. noise) that
are not learned by a neural network. Prior to generating the super-resolution time-series in this
panel, we include a pixel-wise noise term modeled by a Gaussian with a standard deviation of
4.7 Gauss. This is a representative noise-level near disk-center for 720s HMI data.'?

We also show the ratios of HMI to super-resolution MDI (and HMI to super-resolution
GONG). Noticeably, the deep learning model does not contain the 24-hour variability present
in HMI data (See Methods; § 6.4). This is a known distortion in HMI that is not present in
MDI nor GONG. The neural network considers this 24-hour variability as noise and averages it
away.
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Figure 6: Time-series of the line-of-sight signed and unsigned magnetic field with
accompanying magnetograms (at a single time-step). (a & b) Input (900" x 300")
magnetograms shown for SoHO/MDI and GONG at the last time-step in the test-set (14:24 UT
and 21:24 UT respectively), on 31st March 2011. These magnetograms are super-resolved, with
the respective output of the trained neural network shown in (g & h). These can be visually
compared to the high-resolution target SDO/HMI images at the same time (i & j). (c & d) The
total (summed) unsigned magnetic field calculated as a function of time from panels (a, g, i) and
(b, h, j) respectively. Also shown is the ratio of the MDI-to-HMI (black) and super-resolution
MDI-to-HMI (magenta) time-series. The expected value for cross-calibrated data is equal to
unity; clear periodicity is observed in these time-series, consistent with the 24-hour periodicity
seen in HMI data. In these plots, a small constant noise component of o = 4.7 Gauss has been
added to the unsigned time-series to account for de-noising by the neural network. This value
was calculated from a single time-step in the training set by fitting a Gaussian to the histogram
of pixel values < 10 Gauss. (e & f): The total signed magnetic field shown similarly to (c & d).

13



5 Conclusions

This paper shows that deep learning-based super-resolution successfully upsamples and homoge-
nizes solar magnetic field images. We demonstrate the suitability of our approach by upsampling
and cross-calibrating MDI (GONG) magnetograms to the characteristics of HMI. We show that
a careful design of the loss function of the neural network improves the quality of the super-
resolution application, a conclusion that may be applicable to any deep-learning super-resolution
application in the physical sciences. In the loss function, we include penalty terms that con-
strain the distribution and gradients of magnetic field values to better match the ground truth.
We further propose a set of quantities to evaluate the quality of (1) cross-calibration, and (2)
super-resolution of magnetograms that can also be applied across disciplines.

An important contribution of this work is to offer a benchmark of measurements and
methods for performance comparison of future machine learning-based approaches that cross-
calibrate/super-resolve solar magnetic field images. We compare moments of the magnetic field
at various spatial scales to capture how our technique super-resolves MDI and GONG mag-
netograms. KEstablishing benchmarks is necessary for the development and progress of deep
learning approaches for solar magnetic field research. Furthermore, we invite these efforts to
report the same proposed metrics for the same test month (March 2011), so that the community
can transparently assess the state-of-the-art.

Future work will explore including temporal information into the deep learning architec-
ture through multi-frame super-resolution.'® Moreover, it is essential to investigate how the
pre-processing of the solar magnetograms, including feature alignment and re-projection in a
common coordinates system affect the performances of a deep learning approach. Lastly, our
current deep learning approach does not allow us to quantify how confident the model is about
its predictions, particularly for periods where there is no ground truth. It is a promising avenue
for future research to implement a probabilistic machine learning approach that would estimate
the uncertainty of its super-resolved predictions, all the more as super-resolution is an ill-posed
problem with many super-resolved images being consistent with the same low-resolution input.
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6 Methodology

6.1 Data

We use solar magnetograms from NSO/GONG, SoHO/MDI,?6:27 and SDO/HMI. 42829

The data is pre-processed according to the following three steps: (i) standardization of the
Sun’s orientation by rotating solar north to image north; (ii) standardization of the detector
resolution, and the size of the Sun in the image to the observed size at 1 Astronomical Unit
(AU; the average Sun-Earth distance); (iii) alignment of features of magnetograms through
registration and x-y shifting.

To train our super-resolution architecture, we leverage overlapping observation periods be-
tween MDI and HMI (2010 —2011) and between GONG and HMI (2010 —2019), which provides
us with ~ 9,000 (~ 19,000) MDI-HMI (GONG-HMI) magnetogram pairs. We split the data
into training/validation/test sets by randomly allocating ten months to the training set, one
month to the validation set, and one month to the test set for each overlapping year.

In the case of GONG-HMI, we only use even years (2010, 2012, 2014, 2016, & 2018) for this
work to keep the data volume manageable. The test set comprises magnetograms taken at a 96
minute cadence for MDI, and a 10 minute cadence for GONG. Across all experiments we choose
June 2010 and March 2011 as our test month. Table 1 and 2 use only March 2011, which is a
more conservative setting particularly GONG, since the whole 2011 year is not in the test set.

Each full-disk magnetogram is split into 1024 patches of size 32 x 32 pixels for the low-
resolution input and 128 x 128 pixels for the high-resolution target. We augment data through
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random polarity flips and North-South, East-West reflections. This ensures that our sample
comprised magnetograms that would appear in a different solar cycle.

As the structure of the global magnetic field changes on significantly longer time-scales than
the small-scale features, by splitting each magnetogram into 1024 patches, we directly expose
the neural network to the small-scale magnetic field configuration only. As this evolves over
timescales of hours, we do not need to provide a time buffer between the training, validation,
and test months. For other tasks, the slow evolution of the global magnetic field could uninten-
tionally leak into the test set if a sufficient buffer isn’t present.

Our results indicate that the effectiveness of the neural network to cross-calibrate and super-
resolve magnetic field is sensitive to the signal-to-noise ratio within a magnetogram. The signal-
to-noise ratio is affected by (1) the strength of the magnetic field itself, and (2) the proximity
to the solar limb. HMI’s noise level is 15.3 Figure 9 compares the Pearson correlation metric
calculated for super-resolved MDI magnetograms as a function of patch location and magnetic
field value. The grey shaded histograms were calculated for patches across the full solar disk,
while the blue shaded histograms were calculated for patches that lie within 90% of the radius
of the solar disk. In addition, we compare the Pearson correlation for all patches (left column),
and those that have an average unsigned field larger than 15 Gauss (right column). Looking
at all magnetic field values, we can see that the distribution of Pearson correlation coefficients
shows two peaks around 0.25 and 0.75 when patches across the entire solar disk are considered

(9, left column, grey histogram). Discarding patches that lie outside of the central 90% of
the radius of the solar disk removes the double peak and shifts the distribution to be asymmet-
rically centered around 0.8 (9, left column, blue histogram). When we also disregard patches
that show magnetic field strengths close to HMI’s noise level, we see that the distribution of
Pearson correlation coefficients becomes substantially narrower and is more symmetrically cen-
tered around 0.8. This observation supports our finding that magnetogram patches with field
strengths around the noise level are harder to align and less reliable for the neural network to
learn. In addition, near the solar limb the magnetic field intensity weakens due to projection
effects and a reduction of the effective resolution of the instruments. In the post-mortem evalu-
ation of our results, we therefore focus on patches that lie within 90% of the radius of the solar
disk, unless otherwise specified.

Training/Validation Testing
MDI — HMI April 2010 to April 2011, excluding test set June 2010, March 2011
GONG — HMI 2012, 2014, 2016, 2018, excluding test set March 2011, April 2012

December 2014, February 2016
November 2018

Table 3: Data split for model training, validation, and test.

6.2 Neural Network Architecture

The deep learning model used in this work was adapted from the HighRes-net model!®? (see
Figure 7).

The input data consists of a magnetogram and a location channel. The location channel
captures the distance from disk center and gives the network information necessary for estimat-
ing projection and foreshortening effects at the solar limb. The data is encoded into 64 channels
through a series of convolution operations. In the decoding operation, each patch of 32 x 32
pixels is increased through bilinear upsampling to a patch of 128 x 128 pixels.

’https://github.com/ElementAI/HighRes-net
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Figure 7: Diagram of the deep learning model used in this work. The input data consists
of a magnetogram and a location channel, each of size 32 x 32 pixels. The main operations of
the model consist of an encoder and a decoder. Through bi-linear upsampling by a factor of
4, the size of the image is increased from 32 x 32 to 128 x 128 pixels per patch. RP and
DO denote whether a convolutional layer was trained with reflection padding or Monte-Carlo
drop-out respectively.
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6.3 Optimization Penalty Terms

Training a neural network involves the minimization of an objective function that quantifies how
well the transformation of the input matches the target. This objective function is typically
referred to as the loss function (£). As super-resolution is an ill-posed problem (i.e., a one-to-
many operation), multiple super-resolution outputs can explain the same low-resolution input.
For scientifically useful applications of super-resolution, the model output should capture the
physical properties of the target, and cannot just be perceptually convincing. To better respect
the physical properties of the target high-resolution magnetograms, we construct a loss function
that combines four terms, each of which aims to capture a different aspect of what makes a
magnetogram physically plausible:

L= £l2 + wgradﬁgrad + whistﬁhist + wssimﬁssimv (8)

e [;5 penalizes the mean squared error between the super-resolved output and the target,
and captures pixel-based differences in signed flux;

o Lgqq penalizes the mean squared difference between pixel gradients of the super-resolved
output and the target. The gradients are approximated using a Sobel operator3! . Lyrad
aims to capture the gradients present at the boundaries between positive and negative
polarities;

o Ljis penalizes an approximation of the total variation distance between magnetic field dis-
tributions of the output and target magnetograms. For that, we calculate a differentiable
pixel histogram using the method described in3? ;

o L,sim measures the structural similarity between regions surrounding each pixel, including
similarities in contrast, unsigned flux and variance.

We chose loss-weights w to scale each term’s contribution to the same order of magnitude
as the L5 term. We refined their values by conducting a partial grid search that finds the
values for wgrqd, Whist and wgsiy, that minimize Lo + wgraalgrad, L2 + WhistLhist and Lo +
WssimLssim, respectively. Then, we used the weights resulting from this grid search to minimize
the loss function (8). Table 4 shows the optimal loss coefficients for MDI and GONG. These
coefficients are different due to the difference in the systematic properties of the GONG and
MDI instruments, as well as the most ambitious upscaling target when using GONG as a source.

MSE Gradient Histogram SSIM
Optimal MDI Run 1 5 le-5 5e-4
Optimal GONG Run 1 5 le-6 5e-5

Table 4: Optimal training loss coefficients for MDI and GONG super-resoultion and
calibration

6.4 24 hour variability in HMI data

As an extension to Figure 6, in Figure 8 we show the HMI and Super-resolution MDI time-series
along with the ratio of time-series, and the radial velocity of HMI. The observed oscillations
arise from a Doppler shift in the spectral line due to the orbital variation of the spacecraft.?3
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Figure 8: A demonstration of the HMI radial velocity leaking into HMI LOS mag-
netic field data. Top two panels show the total unsigned magnetic field from HMI and the
Super-resolution MDI. Bottom two panels show the ratio of Super-resolution output to HMI,
and the HMI radial velocity where positive values are away from the Sun (bottom panel). In
each panel, vertical gray bars are shown with a 24-hour periodicity starting on 1st March 2011.
It is seen that this periodicity leaks into the HMI data, but is not observed in the cross-calibrated

and Super-resolution MDI data (as would be expected).
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