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ABSTRACT

The Solar Dynamics Observatory (SDO), a NASA multi-spectral decade-long mission that has been daily
producing terabytes of observational data from the Sun, has been recently used as a use-case to demonstrate the
potential of machine learning methodologies and to pave the way for future deep-space mission planning. In
particular, the idea of using image-to-image translation to virtually produce extreme ultra-violet channels has
been proposed in several recent studies, as a way to both enhance missions with less available channels and
to alleviate the challenges due to the low downlink rate in deep space. This paper investigates the potential
and the limitations of such a deep learning approach by focusing on the permutation of four channels and an
encoder—decoder based architecture, with particular attention to how morphological traits and brightness of the
solar surface affect the neural network predictions. In this work we want to answer the question: can synthetic
images of the solar corona produced via image-to-image translation be used for scientific studies of the Sun?
The analysis highlights that the neural network produces high-quality images over three orders of magnitude
in count rate (pixel intensity) and can generally reproduce the covariance across channels within a 1% error.
However the model performance drastically diminishes in correspondence of extremely high energetic events
like flares, and we argue that the reason is related to the rareness of such events posing a challenge to model
training.

Keywords: Sun: activity, UV radiation, and general - Techniques: image processing, GPU computing - Methods:
data analysis, telescopes - Open-source software

1. INTRODUCTION

Since its launch in 2010, NASA’s Solar Dynamics Observatory (SDO; Pesnell et al. 2012) has monitored the evolution of the
Sun. SDO data has enabled researchers to track the evolution of the Sun’s interior plasma flows over solar cycle 24 and beyond.
It has also continuously monitored the evolution of the solar corona, capturing dynamical evolution at time-scales of seconds and
minutes. This capability is due to the suite of four telescopes on the Atmospheric Imaging Assembly (AIA; Lemen et al. 2012)
instrument, which captures full-Sun images at two ultraviolet (UV) bands, seven extreme UV (EUV) bands, and one visible band.

Corresponding author: Valentina Salvatelli

vsalvatelli@microsoft.com


http://orcid.org/0000-0002-3232-4101
http://orcid.org/0000-0001-5190-442X
http://orcid.org/0000-0002-2180-1013
http://orcid.org/0000-0003-2110-9753
http://orcid.org/0000-0002-6203-5239
http://orcid.org/0000-0002-9672-3873
http://orcid.org/0000-0002-2733-2078
http://orcid.org/0000-0001-9854-8100
mailto: vsalvatelli@microsoft.com

2 SALVATELLI ET AL.

The seven EUV channels are designed to capture photons from emission lines in highly ionized metals in plasmas at transition
region (TR; 10° K < T < 10° K) and coronal temperatures (10 > 10° K). This combination of channels with sensitivity to
different temperatures allows researchers to track how transition regions and coronal plasmas heat and cool (e.g., Cheung et al.
2015), and to use these thermal histories to test theories of coronal heating and of flares.

The high spatial resolution ( ~ 1.5”, 4096 x 4096 pixels), high cadence (12 s for EUV channels) full-disk observing capability
is possible because of SDO’s ground system providing a sustained downlink rate of ~ 67 Mbps. The collection of continuous
data, over more than one solar cycle, provides not only numerous opportunities to perform data-driven scientific studies but also
research with the potential to help optimize future solar physics missions.

For instance, the idea of using SDO images for image-to-image translation has been explored in several papers, most notably
by Diaz Baso & Asensio Ramos (2018); Galvez et al. (2019); Szenicer et al. (2019); Park et al. (2019); Salvatelli et al. (2019).
Image-to-image translation can potentially provide a way to enhance the capabilities of solar telescopes with fewer channels or
less telemetry than is available to SDO. The SDO image translation problem can be defined as follows: given a set of N (nearly)
contemporaneous images taken in different EUV channels, can a model be developed which maps the N input images to the
image of a missing (not in input) EUV channel?

Notably, Lim et al. (2021) adopted a widely used image translation method (Pix2Pix, Isola et al. 2017) to tackle the SDO
image-translation problem and to understand which subset of channels can better translate other channels. They trained and
evaluated models for all combinations of input channels for both N = 2 and N = 3 variants of the problem, and compared global
image quality metrics to pick out the channel combinations that perform the best. For some channel combinations, the reported
pixel-to-pixel correlation coefficient approaches unity.

In this paper, we build on the method presented in Salvatelli et al. (2019) for one single channel and we delve deeper into the
opportunities and the limitations of applicability of such “virtual telescopes”. We focus on a permutation of a subset of channels (4
out of 10) and we explore in greater detail what is the quality of this synthetic generation on a number of scientifically-motivated
metrics (figures of merit) and in relation to periods and regions of different level of activity of the Sun.

Together with this paper we also open source the code we used for the analysis Salvatelli et al. (2022)" and that can be used by
the community to train and evaluate similar models on the publicly available SDO dataset released by Galvez et al. (2019) .

2. DATA

The work presented in this project is based on data from SDO’s AIA. The AIA instrument takes full-disk, 4096 x 4096 pixel,
imaging observations of the solar photosphere, chromosphere and corona in two UV channels and in seven extreme UV (EUV)
channels. The original SDO dataset was processed in Galvez et al. (2019) into a machine-learning ready dataset of ~ 6.6 TB
(hereafter SDOML) that we leveraged for the current work.

The SDOML dataset is a subset of the original SDO data ranging from 2010 to 2018. Images are spatially co-registered, have
identical angular resolutions, are corrected for the instrumental degradation over time and have exposure corrections applied.
All the instruments are temporally aligned. AIA images in the SDOML dataset are available at a sampling rate of 6 min. The
512 x 512 pixel full-disk images have a pixel size of ~ 4”8.

The images are saved in single-precision floating point to preserve the high dynamic range (> 14 bits per channel per pixel).
For numerical performance purposes, the images of each channel are re-scaled by a per-channel constant factor which is approx-
imately the average count rate for that channel. The per-channel constant factors can be found at Tab.6.

3. METHODOLOGY

Our approach of synthesizing solar EUV images is to perform image translation from multiple input channels to one single
output channel. For the development of this work we focused on the permutations of four channels (94, 171, 193, 211 A). These
channels are sensitive to coronal plasmas at different temperatures (Cheung et al. 2015).

To perform the image translation we used a deep neural network (DNN, Goodfellow et al. 2016), more specifically we
adopted a U-Net architecture (Ronneberger et al. 2015), an encoder—decoder with skip connections that was first designed for
image segmentation on medical images. We used Adam optimizer (Kingma & Ba 2014) and Leaky ReLU (Maas et al. 2013)
activations, and implement the code using the open source library PyTorch (Paszke et al. 2017). The full details of the adopted
architecture is given in Fig. 1. We limit the number of channels to four for computational resources constraints. For the training
and inference of the architecture presented above we used 4x NVIDIA Tesla T4s. We trained each model for 600 epochs.

! Zenodo: ML pipeline for Solar Dynamics Observatory (SDO) data
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Figure 1. U-Net based architecture used to synthesize solar EUV images. Each box corresponds to a multi-channel feature map. Grey boxes
are copied maps. The number of channels is shown on top of the box. Resolution in pixels is indicated on the left of the box. Arrows represent
operations. For images of size 512 X 512, the trainable parameters are 34, 513, 857. Figure taken from (Salvatelli et al. 2019).

For comparison we experimented also with a simpler baseline model, described by the following equation:
Ypred = aXi +ﬁX2 + )/X3 +0 (1)

where Ypeq is the reconstructed pixel of the output channel, X; are the pixel values of the input channels; «, §, y are the weights
and ¢ the bias of the linear combination of the channels. a, 3, v, § are trainable parameters of the model.
The metrics we use to evaluate the accuracy of our results for each permutation are:

o The difference between predicted and ground truth images in the form of normalized mean squared error (NMSE; Eq. 2)
and normalized root mean squared error (NRMSE; Eq. 3).

o SN i)
NMSE(®, §) = S —— )
i=1 Yi
SN (yi=ii)?
RNMSE(y, ) = ——~ 3)
Yy

o The structural similarity index (SSIM; Wang et al. 2004), a metric commonly used in computer vision to compute similarity
between images, measuring the difference in terms of visually perceived texture and morphology. Identical images have
SSIM equal to 1.

o The average of NRMSE and SSIM, as described in Eq. 4. Lower values mean better performance in this metric.

NRMSE(y, ) + [1 — |SSIM(y, §
Err(y. §) = 8] +£ | . ] @

o The average pixel-to-pixel Pearson correlation coefficient.

In order to assess how much the DNN is able to learn the physical correlations between channels and to correctly reproduce
them in the synthetic images, we also evaluate the difference between the real and the synthetic covariance of the channels. With
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Deep Neural Network 211.sqr 211 193_sqr 193 171_sqr 171 94 sqr 94

NMSE 0.010024 0.008748 | 0.013414 0.013015 | 0.015270 0.010151 | 0.009482 0.013643
NRMSE 0.195127 0.182286 | 0.225717 0.222332 | 0.240829 0.196360 | 0.189773 0.227641
[1-SSIM | 0.040844 0.046189 | 0.022866 0.024522 | 0.030636 0.034892 | 0.114447 0.138455

(NRMSE + |1 -SSIM[)/2 0.117985 0.114237 | 0.124292 0.123427 | 0.135732 0.115626 | 0.152110 0.183048

Table 1. Performance of the DNN on different permutations of input/output channels in the set (94, 171, 193, 211 A) and for different scaling
of the input data. In every column the input channels are all but the one indicated in the column name that corresponds to the output channel.
Each value is the mean over the whole test dataset. For each metric in this table lower is better. For 94 A the similarity index is higher than
for the others channels, this can be explained by the fact the average value in this channel is higher and the metric is affected by the absolute
values. See Sec. 3 for explanation of the metrics.

Deep Neural Network Model output
Scaling 211 A 193 A 171 A 94 A
Non Root 0.994 +0.004 0.991 +0.006 0.993 +0.003 0.991 = 0.003
Root 0.993 +0.004 0.996 +0.004 0.990 + 0.005 0.994 = 0.004

Table 2. DNN model. Average Pearson correlation coefficient pixel-to-pixel, mean and standard deviation over the full test dataset for per-
mutations of input/output channels in the set (94, 171, 193, 211 A). For each channel combination the average Pearson correlation coefficient
pixel-to-pixel was calculated for both trained models, with and without root scaling. The results observed are impressive and in all cases the
performance is superior to 0.99.

the aim of better understanding the error, in addition to the standard covariance we compute the neighborhood covariance. In this
case the output is a map of the same size of the input images where each value in the map corresponds to the covariance on a
squared patch centered in the pixel and of size 20 x 20 pixels as described in Eq. 5.

SN - D@ - P
N-1

®)

COVpatch =

where N is the total number of pixels in the patch.

Each model has been trained on 6,444 images (1,611 timestamps, one image per channel for each timestamp) in the intervals
January 1% 2011 to July 31* 2011 and January 1* 2012 to July 31% 2012. For testing 2, 668 images (667 timestamps) have been
used, taken in the intervals August 1¥2011 to October 312011 and August 1*2012 to October 31* 2012. Each timestamp is at
least 61 hours apart from the closest ones. These time ranges have been selected to ensure we were testing on images significantly
different from the training ones. Only timestamps for which all the channels of interest were available have been included in the
above datasets.

4. EXPERIMENTS

For this analysis we trained eight models using the data and architecture described in Sec. 2 and Sec. 3, two models for each
of the four channels permutation. For each channel permutation we trained (1) a model where the input data was scaled by
a constant factor (cf. Tab. 6) and (2) a model where the square root of the input data was taken, in addition to the constant
scaling. The second scaling technique is to explore the impact of pixels with extreme ranges on the training. Each model has
been evaluated by studying both the aggregated performance on the full test data and the performance on specific timestamps.
Namely timestamps in the neighborhood of Valentine’s Day flare (2011-2-15:1:50:00 UT) and in a quiet day of the same month
(2011-02-10 00:00:00). The focus of these experiments is to evaluate the robustness of the image-to-image translation approaches
in normal and extreme conditions of the Sun’s activity. For comparison, we trained also four linear models, one model for each
of the four channels permutation, using Eq. 1and input scaled by a constant factor.

5. RESULTS

In Tab. 1 we explore the permutations of three input channels and one output channel and the effect of applying a root scaling
transformation to the input images. In addition in Tab. 2 we show the correlation pixel by pixel for each of the permutations. We
found that the same architecture produces similar reconstruction errors and correlation values over all the channels with a NMSE
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Linear Model 211 193 171 094

NMSE 0.749594 | 0.742833 | 0.741476 | 0.875264
NRMSE 1.687336 | 1.679708 | 1.678174 | 1.823300
1-SSIM 0.588910 | 0.441623 | 0.490644 | 0.976495

(NRMSE + |1 - SSIM[)/2  1.138123 | 1.060665 | 1.084409 | 1.399897

Table 3. For comparison with Tab. 1, performance of the linear model on different permutations of input/output channels in the set (94, 171,
193, 211 A) for standard (no square root) scaling. The DNN consistently improves results of one order of magnitude in each of these metrics.
The comparison demonstrates non-linear patterns between channels are important for a correct reconstruction of the images.

of about 0.01. We observe the similarity index of 94 A is worse of an order of magnitude with respect to the other channels,
this can be explained by the fact SSIM is a not normalized metric and the average test value for this channel is higher than for
the others (see Appendix, Tab. 7). The results are remarkable, for example for 94 A the peak emission lies at a considerably
higher temperature than the input channels (see Fig. 1 of Cheung et al. 2015) that makes the reconstruction task a particularly
challenging one. These results are in agreement with the results in Salvatelli et al. (2019) and Lim et al. (2021). Please note
that the values reported in Tab.1 of Salvatelli et al. (2019) are not normalized. The squared-root scaling model shows roughly
equivalent performance with the model with no squared-root applied to input data except for the channel 94 A.

It is interesting to compare the results in Tab. 1 with those in Tab. 3 where the same set of metrics are computed for the
linear model. The DNN consistently improves by one order of magnitude over the linear model performance. This result clearly
displays the value of using a DNN over a simpler model for the synthesis of the image. The comparison also demonstrates the
strength of non-linearity between EUV channels and the fact it cannot be neglected for a meaningful reconstruction.

In order to further evaluate the performance of both models, we calculate in Tab. 2 the average pixel-to-pixel Pearson correlation
for pixels inside the solar disk for each channel combination. Agreeing with Tab. 1 results, the average pixel-to-pixel correlation
shows both models have a remarkable performance where none of the channel combinations had a performance lower than 0.99.
These results outperform all the channel combinations presented in Lim et al. (2021), which tries several combinations of EUV
channels translations using the DL method “Model B” from Park et al. (2019) and Isola et al. (2017).

Notably Lim et al. (2021) did not report on other metrics we can use to compare the quality of the corresponding synthetic
images. We demonstrate in the following analysis that the elevate visual quality of the images and the excellent pixel-to-pixel
Pearson correlation values are not enough to guarantee the absence of artifacts which may impact the scientific utility of the
synthetic images. This is illustrated in Fig. 2, Tab. 4 and Fig. 6. Whether the discrepancies between real and synthetic images are
sufficiently small to neglect clearly depends on the science case. For this reason, we argue that metrics such as covariance between
real and synthetic image and accuracy by intensity should be standard metrics to be considered when reporting on models for the
synthesis solar images.

While useful to evaluate the overall performance of the algorithm, the aggregated metrics do not provide insights about the
range of validity of the algorithm and the reasons behind its errors. Firstly, to understand how to possibly improve the model,
and secondly, to clarify what could be a concrete use of the algorithm in future missions, it is helpful to evaluate the prediction
uncertainty at different intensities. For all the permutations, in Fig.2 we show the uncertainty on the predicted count rate (top)
and the pixel distributions (bottom) as a function of the real count rate. These plots highlight three important factors:

e The algorithm does well over about three orders of magnitude of true count rate (intensity) and it largely increases its error
when trying to predict the highest and lowest count rates. It means the global metrics would be much more favorable if
removing these extreme pixels. This behavior also implies the algorithm could be used with confidence for applications
that do not require accuracy on the most extreme values of count rates.

e The difficulty in predicting the pixels with the highest and the lowest count rate is not surprising if looking at the count rate
distributions (histograms in Fig.2). The tails of the distributions, where the model’s accuracy and uncertainty increase, are
severely underrepresented in the distribution. This implies the image-to-image translation algorithm has not been trained
or trained in a very limited way on pixels having these count rate values. This observation also provides a clear indication
of which strategies can improve the algorithm performance, i.e., techniques to compensate the magnitude imbalance rather
than larger architectures.

e Applying root scaling to the input images during the training tends to improve the results for low count rate pixels and
reduces the uncertainty on the prediction. Some channels (193, 211 A) are more positively impacted than others by this
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Figure 2. Predicted Intensity vs Real Intensity for each of the four channels, for all the pixels contained in the 667 images on the test set. From
top to bottom: 211, 193, 171, 94 A channels. For each channel: the top plot shows the error on the predicted count rate as a function of the real
count rate in log10. The error band represents the standard deviation, the line corresponds to the median. In green the standard U-net model,
in blue the same architecture with square root scaling applied to the input images; the bottom plot shows the histogram of the pixel count rate
distributions over the test set. The model performs well over three orders of magnitude but its accuracy degrades quickly in the extreme regions

where fewer pixels are available.

change. This behavior is explained by the fact root scaling improves the sensitivity to small values during the training. We
hypothesize that further exploration of different scaling strategies for the training can also be a way to extend the accuracy
of the algorithm over more orders of magnitude.

Examples of the resulting recovered images when adopting the DNN architecture described in Sec. 3 and a model with root
scaled input, is given in Fig. 3 and Fig. 4. The root scaling is reverted in the illustrated images. The first are example of
reconstructions on a quiet day, where the Sun shows less activity, while the second are during the well known Valentine’s Day
flare. In these figures, the first column corresponds to the original images, while the second column corresponds to the ones
generated by the DNN. Based on visual inspection, the synthetic image reproduces the morphology of coronal loops in the
ground truth image for channels 211 and 171 A, and the prediction is instead a bit less realistic for 193 A for both quiet and active
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Figure 3. Real versus synthetic images on a quiet timestamp (2011-02-10 00:00:00 UT) when using model with root scaling. From left to right:
real image, image synthesized by looking at the other 3 channels, residuals relative to the GT value

and difference between the two images. From top to bottom: 211, 193, 171, 94 A channels.

days. Clearly during the quiet day the all three channels have better performance than in the Valentine’s day. It also interesting
to observe that 94 A is the best performing channel during the quiet day, but the worst performing channel during the active day.
This aligns to the results showed at Tab.1 and 2. It is unsurprising since the input AIA channels 94, 171 and 193 A channels
have sensitivity to the plasma observed in the 211 A channel. This outperforms previous results in Park et al. (2019), where a
conditional generative adversarial network (CGAN) had been trained to translate HMI magnetograms to AIA images.

In the third column of Fig. 3 and Fig. 4 we included the residuals relative to the real image and in the fourth column of the same
figures we display the differences between the real and generated images. Dark blue and bright red correspond to the regions
where the differences are the largest, and can be seen to be located where the active regions (shown as the brightest regions in the
original and generated images) are.

Interestingly, the model well reconstructs coronal holes (CH) in both the active and quiet Sun cases described above, despite
the low signal in these regions. This could be due to the fact that the physics of these regions is easier to model than active region
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Figure 4. Real versus synthetic images during a flare (2011-02-15 02:00:00 UT) when using model with root scaling. From left to right: real
image, image synthesized by looking at the other 3 channels, residuals relative to the GT value and

difference between the two images. From top to bottom: 211, 193, 171, 94 A channels.

coronal loops as the field lines are open and have relatively simpler configuration. A quantitative comparison between CH and
full-disk is shown in Fig. 5 for channel 193 A (for the quiet Sun data represented in Fig. 3), where CHs are most distinctly visible
due to their contrast. The segmentation mask identifies the CH regions based on the simple but robust adaptive intensity threshold
technique (similar to the technique employed in Rotter et al. 2012, 2015), and the histograms show the difference between the
ground truth and the predicted intensities (on a pixel-by-pixel basis) for pixels both within the CH boundaries and the full-disk.
It is to be noted that the segmentation mask is constructed for both the predicted and ground-truth images independently using
the same intensity threshold criterion. Clearly, the predicted AIA intensities are well constrained not just over the full disk but
also on the relatively quieter CH areas.

In Tab. 4 and Tab. 5 we report the reconstruction error on the covariance between channels, over four hours, for the case 94,
171, 193 A to 211 A in correspondence of a flare and on a normally quiet day. Not surprisingly, in light of the results above,
the reconstructed covariance has great accuracy (less than 1% of error) on a quiet day but its error increases in several orders
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Timestamp Channel | True Cov Pred Cov  Diff  %Diff
2011-2-15-0-0 94 0.278 0.256 0.022 7.9
2011-2-15-1-0 94 0.262 0.246 0.016 59
2011-2-15-2-0 94 13.9 92.3 -78.5  -565
2011-2-15-3-0 94 1.69 1.54 0.150 8.9
2011-2-15-4-0 94 0.392 0.375 0.017 4.4
2011-2-15-0-0 171 0.117 0.115 0.002 2.1
2011-2-15-1-0 171 0.114 0.112 0.002 1.9
2011-2-15-2-0 171 1.29 13.1 -11.8  -913
2011-2-15-3-0 171 0.186 0.178 0.008 4.3
2011-2-15-4-0 171 0.139 0.136 0.003 23
2011-2-15-0-0 193 0.048 0.047 0.001 1.4
2011-2-15-1-0 193 0.047 0.047 0.001 1.3
2011-2-15-2-0 193 0.191 0.605 -0414  -216
2011-2-15-3-0 193 0.065 0.063 0.003 4.0
2011-2-15-4-0 193 0.055 0.054 0.001 2.1

Table 4. Errors in reconstructing the covariance between 211 A and the other 3 channels when using the synthetically produced image for 211
A in correspondence of a highly energetic event (Valentine’s Day flare on 2011-2-15:1:50:00 UT). Interestingly the reconstructed covariance
has a much higher error than what seen in a quiet period, cf. Tab. 5, at least 1h before the flare has been detected.
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Timestamp Channel | True Cov Pred Cov Diff %Dift

2011-2-13-0-0 94 0.1506 0.1504  0.0002 0.1
2011-2-13-1-0 94 0.1672 0.1654  0.0018 1.1
2011-2-13-2-0 94 0.1601 0.1588  0.0013 0.8
2011-2-13-3-0 94 0.1713 0.1718  -0.0004 -0.3
2011-2-13-4-0 94 0.1652 0.1650  0.0002 0.1

2011-2-13-0-0 171 0.1213 0.1210  0.0002 0.2
2011-2-13-1-0 171 0.1261 0.1254  0.0007 0.5
2011-2-13-2-0 171 0.1227 0.1223  0.0004 0.3
2011-2-13-3-0 171 0.1241 0.1244  -0.0002 -0.2
2011-2-13-4-0 171 0.1226 0.1219  0.0007 0.6

2011-2-13-0-0 193 0.0449 0.0448  0.0000 0.1

2011-2-13-1-0 193 0.0470 0.0468  0.0002 0.4
2011-2-13-2-0 193 0.0439 0.0439  -0.0000 -0.1
2011-2-13-3-0 193 0.0465 0.0468  -0.0003  -0.7
2011-2-13-4-0 193 0.0471 0.0470  0.0001 0.2

Table 5. Errors in reconstructing the covariance between 211 A and the other 3 channels when using the synthetically produced image for 211
A in correspondence of a quiet period few days before Valentine’s Day flare. The percentage difference is below 1% for all the channels.

of magnitude in correspondence of the extreme event. The results reported in Tab. 4 and Tab. 5 are obtained using the model
without square root scaling, the most sensitive to extreme values. They should therefore be interpreted as an upper bound on
the error that a similar image translation would have. With the aim of better understanding the source of error, in addition to
the standard covariance, we compute a covariance map with spatial mean on a rolling squared window of 20 x 20 pixels, see
Eq. 5 for definition. The resulting covariance map in correspondence of a flare is shown in Fig. 6. The map clearly shows the
error of the model is localised in the area of the flare and it does not affect the rest of the map, in agreement with the localized
reconstruction error shown in Fig. 4. This result confirms the results of the “virtual telescope” would be accurate for most of the
pixels, also in presence of an extremely energetic event, but for the specific area where the event happens. Similar results hold
for the covariance in other channel permutations.

Incidentally, the above covariance result suggests an increase in its reconstruction error could also be used as a method for early
detection of flares as the error starts to increase before the actual flare’s event. Variations in reconstruction errors are commonly
used in machine learning as anomaly detection methods (e.g. An & Cho (2015); Zhou & Paffenroth (2017). While directly
detecting an increase in the data count could be found to be more effective, the sensitivity to non-linearity of the reconstruction
task could produce a stronger or complementary signal that we think is interesting to consider in future work.

6. CONCLUDING REMARKS

In this study, we analyzed the performance of an image-to-image translation DNN model in accurately reconstructing extreme
ultra-violet images from a solar telescope, focusing on the permutations of four channels. We found that the reconstruction error
is extremely accurate over three orders of magnitude in pixel intensity (count rate) and it rapidly increases when considering
extremely low and high range of intensities. This behavior is explained by the pixel count rate distribution in the training set, the
rarer the value the more difficult for the DNN to provide an accurate prediction. Similarly, when looking at the reconstruction
error on the covariance at different times, we found the model can synthetically predict the covariance with less than 1% of error
on quiet days but its performance is severely affected in correspondence of flares, in the active regions.

The results show that a virtual telescope would produce accurate estimations on a range of intensities but, if built following
the methodology here described, would not be able to accurately reproduce extremely energetic events like flares. How and in
which limit the reconstruction error for such specific events could be improved is an area of research that we leave for future
work. The rareness of flare events poses a challenge in training machine learning algorithms to accurately reproduce such events.
Based on the results above, we think adopting oversampling techniques and different scaling strategies would improve at least in
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Figure 6. Reconstruction error on the covariance in correspondence of Valentine’s Day flare. From left to right: Difference between the ground
truth and the predicted images. Differences between the real and predicted covariance maps between 211 A - the predicted channel - and each
of the input channels. From top to bottom: each row corresponds to a different timestamp at interval of 1h. The 3rd line is the closest to the
time of the flare.

some measure the performance. To overcome this challenge, other strategies like automatic detection of anomalies could also be
adopted in combination with image-to-image translation, in the design of a virtual solar telescope.

In this paper, we did not explore the dependence of model performance from spatial resolution. In principle smaller subpixel
scales could have information that improve the global performance of image synthesis and we think this is an important question
to be addressed in future work. Importantly, we expect the deterioration of the synthetic accuracy for rare events to happen
regardless of the adopted scale because it is caused by the scarcity of examples for training.
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APPENDIX

A. SCALING UNITS FOR EACH AIA CHANNEL

AIA channel (A) Scaling unit [DN/s/pixel]

94 10

171 2000
193 3000
211 1000

Table 6. Table of AIA channel scaling units.

AIA channel (A) Yoy

94 26

171 0.13
193 0.087
211 0.26

Table 7. Table of average values over the test set after scaling by channel

B. CODE DESCRIPTION

In this appendix we describe the modular software used to produce the analysis and made freely available online on GitHub
under GPL licence. Users are invited to consult the code documentation for additional detail.

e sr¢/sdo - contains all the modules required to run the pipeline plus additional functionalities that can be used as standalone
library to interact with the SDO-ML dataset v1.

e config - contains some configuration templates.
e scripts - contains some analysis scripts specific to the paper, they can be used to reproduce the results.

e notebooks - contains some notebooks specific to the paper that can be used to reproduce some of the plots in the paper and
some examples to show how to use some functionalities (e.g. how to use the dataloader to load timestamps of interest).

The most relevant modules under src are:

o src/sdojdatasets/sdo_dataset.py this module contains the SDO_Dataset class, a custom Dataset class compatible with
torch.utils.data.DataLoader. It can be used to flexibly load a train or test dataset from the SDO local folder. Data can
be selected according to the 3 criteria:

* asking for a specific range of years and a specific frequency in months, days, hours, minutes
* passing a file that contains all the timestamps of interest

* passing two timestamps ranges and a desired step

This class assumes a pre-computed inventory of the SDO dataset exists.

e src/sdojpipelinespirtual_telescope _pipeline.py this module contains the VirtfualTelescopePipeline class, the class that con-
tains all the training and test logic of the modeling approach. This class also handles the metrics logging and the files
saving. Beyond being used for reproducing the results of this work, this class can be used as example of how to integrate
the dataloader above with other PyTorch models for a different set of experiments.
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e src/sdojparse_args.py this module contains the description of all the parameters that can be passed as input to the pipeline
and their default values.

C. ADDITIONAL FIGURES

In this appendix we report some additional results not included in the main text.

Ground Truth Prediction (Pred - GT)/GT Pred - GT

\ \
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Figure 7. Real versus synthetic images on a quiet timestamp (2011-02-10 00:00:00) when using model without root scaling. From left to right:
real image, image synthesized by looking at the other 3 channels, residuals relative to the GT value and difference between the two images.
From top to bottom 211, 193, 171, 94 A channels.
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Figure 8. Real versus synthetic images during a flare (2011-02-15 02:00:00) when using model without root scaling. From left to right: real
image, image synthesized by looking at the other 3 channels, residuals relative to the GT value and difference between the two images. From
top to bottom 211, 193, 171, 94 A channels.
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