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Abstract

Estimates of seismic wave speeds in the Earth (seismic velocity models) are key
input parameters to earthquake simulations for ground motion prediction. Owing
to the non-uniqueness of the seismic inverse problem, typically many velocity
models exist for any given region. The arbitrary choice of which velocity model
to use in earthquake simulations impacts ground motion predictions. However,
current hazard analysis methods do not account for this source of uncertainty. We
present a proof-of-concept ground motion prediction workflow for incorporating
uncertainties arising from inconsistencies between existing seismic velocity models.
Our analysis is based on the probabilistic fusion of overlapping seismic velocity
models using scalable Gaussian process (GP) regression. Specifically, we fit a GP
to two synthetic 1-D velocity profiles simultaneously, and show that the predictive
uncertainty accounts for the differences between the models. We subsequently
draw velocity model samples from the predictive distribution and estimate peak
ground displacement using acoustic wave propagation through the velocity models.
The resulting distribution of possible ground motion amplitudes is much wider
than would be predicted by simulating shaking using only the two input velocity
models. This proof-of-concept illustrates the importance of probabilistic methods
for physics-based seismic hazard analysis.

1 Introduction

Seismic velocity models — estimates of the Earth’s seismic wave speeds — underpin earthquake
ground motion prediction in seismic hazard analysis, as they are key inputs to wave equation solvers.
They continue to be produced at different resolutions and scales, stemming from different methods
(e.g., tomography [1], reflection surveys [2]). The seismic inverse problem is ill-posed as there are
not enough data to constrain a unique true Earth model [3]. As such, many overlapping velocity
models exist for a given region. Consequently, the choice of which velocity model to use in ground
motion prediction is often arbitrary. Nevertheless, it has a significant impact on the results as different
models have different structures, length scales, and amplitudes.

The key output of seismic hazard analysis is an estimate of peak ground motion, to assess potential
infrastructure damage and inform earthquake engineering. Most commonly, empirical ground motion
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models (GMMs) [4, 5] are used to predict the median and uncertainty of a ground motion parameter
(e.g., peak ground displacement — PGD) for earthquake scenarios [6]. They make rapid predictions,
but drastically simplify the underlying physical processes. Importantly, they approximate the effect
of seismic velocities on ground motion, typically only using the average shear wave velocity in the
uppermost 30 m [7]. GMMs are thus limited in accuracy and reliability. An alternative is to simulate
earthquake scenarios in 3-D by solving the wave equation and extracting PGD estimates, requiring
3-D seismic velocity information as input. However, there are two issues: (i) simulating many
earthquakes is computationally costly, and (ii) choices of input parameters are subjective, including
the input velocity model. To address the first issue, recent advances in machine learning have begun
accelerating wave propagation methods [8–11]. However, current physics-based hazard analysis
workflows do not consider inconsistencies between velocity models. This omits a key source of
uncertainty, given that predicted ground motion can be drastically impacted by velocity structure. One
possible solution is to fuse different velocity models, and use the output in earthquake simulations.
Unfortunately, existing methods for velocity model fusion [e.g., 12–14] typically do not produce
probabilistic outputs, limiting their ability to account for differences between velocity models.

In this study, we propose a workflow to account for inconsistencies between seismic velocity models
in ground motion prediction. Our method is based on the probabilistic fusion of velocity models
using Gaussian processes (GPs), and estimates uncertainties owing to differences between them. We
then produce probabilistic ground motion predictions with respect to these uncertainties by drawing
velocity model samples from the GP predictive distribution, simulating acoustic wave propagation
using each sample, and extracting the PGD predictions. We illustrate that such a probabilistic method
is necessary to capture the spread of possible ground motion scenarios.

Our key contributions are as follows: (i) We present a workflow for probabilistic earthquake ground
motion prediction that accounts for inconsistencies between seismic velocity models. (ii) We
demonstrate the capability of scalable GPs for the probabilistic fusion of different estimates of the
same physical parameter, through a synthetic example using 1-D seismic velocity models. The code
for this work is written in Python and is available at Scivier et al. [15].

2 Gaussian processes and data fusion

GPs [16] are a class of non-parametric models for defining a distribution over function spaces. They
are widely used for regression, providing robust uncertainty quantification and predictive performance.
Unfortunately, exact GP regression is limited in scalability owing to a computational cost of O(n3),
where n is the number of data points. Despite the small datasets used in this study, seismic datasets
of realistic size can have n ∼ 106–107. To overcome this, approximate GP methods have been
developed [17]. One popular method for scalable GP inference is the sparse variational Gaussian
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(d) PPGPR samples

Figure 1: Comparison of SVGPR and PPGPR for the probabilistic fusion of seismic velocity
models. (a) shows the input synthetic 1-D seismic velocity profiles with depth. (b) and (c) show
the fusion results of SVGPR and PPGPR, and (d) shows the 200 function samples drawn from
the PPGPR predictive distribution used in Section 4. The shading in (b) and (c) show the SVGP
posterior predictive distribution, qSVGP (y∗), and the PPGPR latent predictive distribution, qPPGPR (f∗),
respectively, in terms of distance from the predictive means in standard deviations.
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process (SVGP) [18, 19], which applies variational inference to fit GPs. SVGPs introduce a set of
inducing variables to approximate the full dataset using a smaller set of points m ≪ n. Thus, the
computational cost is reduced to O(nm2 +m3), making SVGPs practical to apply to large 2-D and
3-D datasets.

In this study, we use scalable GP regression for fusing seismic velocity models by fitting a GP to
multiple datasets simultaneously. A key advantage of GPs is their modelling of covariance structure,
which enables samples matching the spatial patterns of the input data to be drawn from the predictive
distribution.

We aim to model inconsistencies between velocity estimates as uncertainty in the GP predictive
distribution. Thus, we need to understand the form of the predictive variance in the SVGP model.
Below we provide a brief summary of the key SVGP results to highlight the relevant context for our
work. The interested reader is referred to Titsias [18], Matthews et al. [19], Jankowiak et al. [20], and
Murphy [21] for full derivations and explanations. The inputs are the training set (coordinates of the
input velocity models), X, the inducing point locations, Z, and the points at which we wish to predict,
X∗. Then fX, fZ, f∗ are the (unknown) velocity values that we predict at these locations; and y are
the observed data (input velocity values). SVGP-based methods approximate the joint posterior as
q (f∗, fX, fZ) = p (f∗, fX | fZ) q (fZ), where p (f∗, fX | fZ) is calculated exactly [21]. The variational
distribution is q (fZ) = N (fZ | m,S), where m and S are (learned) variational parameters. The
predictive distribution over the underlying function (at the target points) f∗ is given by

q (f∗) =

∫
p (f∗ | fZ) q (fZ) dfZ

= N
(
f∗ | µ∗, σf (x∗)

2
)
,

(1)

where,

µ∗ = K∗,ZKZ,Z
−1m

σf (x∗)
2
= K∗,∗ −K∗,ZKZ,Z

−1 (KZ,Z − S)KZ,Z
−1KZ,∗,

with e.g., K∗,Z = k (X∗,Z), and k (·, ·) is the (chosen) covariance function. Assuming a Gaussian
likelihood, measurements (at the target points) y∗ are related to the underlying function (at the
target points) f∗ as p

(
y∗ | f∗, σ2

y

)
= N

(
y∗ | f∗, σ2

yI∗
)
, where σ2

y is the (learned) observational noise
variance. Thus, the predictive distribution over y∗ is,

q (y∗) =

∫
p
(
y∗ | f∗, σ2

y

)
q (f∗) df∗

= N
(
y∗ | µ∗, σf (x∗)

2
+ σ2

yI∗
)
.

(2)

The predictive variance at a target point x∗,i is thus the sum of input-dependent variance over
the underlying function, σf (x∗,i)

2, and observational noise, σ2
y: Var (x∗,i) = σf (x∗,i)

2
+ σ2

y .
Despite this symmetry in the predictive variance, Jankowiak et al. [20] highlight that the typical
SVGP objective function (variational ELBO) targets only large σ2

y – often resulting in σ2
y ≫

σf (x∗,i)
2, which we see from the data-fit term: LSVGP ⊃ − 1

2σ2
y
|yi − µX,i|2. This means we

would model disagreements between different velocity models as observational noise. Given the
degree of disagreement varies spatially, σy would need to be input-dependent [e.g., 22, 23]. However,
this would result in noisy samples in the predictive distribution (see Fig. 1b) — making them useless
for downstream tasks.

We instead wish to model inconsistencies between velocity models as input-dependent uncertainty
in the underlying physical process (i.e., σf (x)). To enable this, we use the parametric predictive
GP regression (PPGPR) model [20]. PPGPR is a variation of SVGP with an objective function that
directly targets the predictive distribution (Eq. (2)). Notably, the PPGPR objective encourages large
σf (x∗)

2, as seen from the data-fit term: LPPGPR ⊃ − 1
2

1
σ2
y+σf (xi)

2 |yi − µX,i|2. Contrary to SVGP,

this typically results in σf (x∗,i)
2 ≫ σ2

y . Therefore, we can choose to ignore σ2
y and use the PPGPR

latent predictive distribution, q (f∗).
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3 Fusing synthetic seismic velocity models

We present a proof-of-concept demonstrating the applicability of PPGPR for the probabilistic fusion of
two synthetic 1-D seismic velocity models. We note that we do not consider uncertainties attached to
input velocity models in this study (i.e., the input models themselves are not probability distributions).
Two datasets, s1 and s2, are sampled (n = 25 data points, each) from a GP prior, using radial basis
function (RBF) kernels with different length scales. The samples have different coordinates in an
overlapping region. The first model is set as the first sample, m1 = s1. The second model is a
weighted superposition of the two samples, m2 = 2

3s1 +
1
3s2, to create larger-scale similarities and

smaller-scale differences — typical of different seismic velocity models. Fig. 1a shows the input
velocity models, which are 1-D profiles with respect to depth.

At training time, the input models are concatenated and used to condition the GP as a single dataset.
For regression, we employ both PPGPR and SVGPR for comparison, using scaled RBF kernels,
m = 20 inducing points (with learned locations), and Gaussian likelihoods. The models are trained
using the Adam optimiser [24] and identical hyperparameters (i.e., learning rate and number of
iterations). Hyperparameters are chosen through trial-and-error, and full hyperparameter details are
provided in the code [15]. Training the models takes one minute for each method, on a laptop using
an NVIDIA T500 2GB GDDR6 GPU.

Fig. 1b and c show the results of SVGPR and PPGPR, respectively, on the two velocity models.
As discussed in Section 2, optimising the SVGP objective results in σ2

obs ≫ σf (x)
2, making it

unsuitable for this task owing to a lack of input-dependence on the predictive variance and noisy
function samples. On the other hand, PPGPR performs well, with predictive samples appearing to
reflect the spatial patterns of the input models. In an ideal case of maximum likelihood estimation for
fitting a univariate Gaussian distribution to two observations, y1 and y2, the resulting distribution is
N

(
µ = 1

2 (y1 + y2), σ
2 =

(
y1−y2

2

)2)
[25]. In our example, we therefore expect the ±1σ contours

to approximately follow each of the input velocity models. We interpolated m1 and m2 at the test
points using cubic splines and calculated the root mean square error (RMSE) of the SVGP and
PPGPR predictive means and variances with respect to the above ideal result. The RMSEs on µSVGP
and σ2

SVGP were 0.243 and 0.098 (in wave speed units), respectively, while for µPPGPR and σ2
PPGPR

the RMSEs were 0.045 and 0.012 (in wave speed units). The PPGPR predictive distribution thus
appropriately quantifies the uncertainty on the knowledge of seismic velocities in the region. Most
importantly for our application, the covariance structure of the data is modelled. This enables the
drawing of samples from the predictive distribution that match the spatial patterns of the input data.
Despite only fusing two velocity models here, our approach is generally applicable for fusing any
number of input datasets.

4 Probabilistic ground motion prediction

We propose a proof-of-concept workflow for propagating the predicted uncertainty on seismic
velocities through simulations of the acoustic wave equation, to produce probabilistic ground motion
predictions. First, we draw 200 function samples from the PPGPR latent predictive distribution
(Fig. 1d). Then for each sample, we simulate the 1-D acoustic wave equation for displacement, u, with
a Ricker wavelet as the earthquake source, using a finite difference scheme (6 s for 200 simulations on
a laptop — vectorised over velocity models). At the surface, we implement a free-surface boundary
condition (i.e., the acoustic pressure p = 0). At depth, we implement an absorbing boundary
layer according to Chern [26]. Fig. 2a–f shows snapshots of the displacement field at various time
steps in one of the simulations. For each simulation, we record the peak ground displacement at
the surface (i.e., PGD; depth = 0), producing one PGD estimate per simulation (i.e., per sample
velocity model). Fig. 2g shows a histogram of the recorded PGD measurements from the simulations.
Additionally, we ran simulations using interpolated versions of m1 and m2 and marked the resulting
PGD measurements in Fig. 2g, to investigate how much information is gained by running simulations
for many velocity model samples. Clearly, the PGD measurements for m1 and m2 do not account
for the spread of possible ground motions, given the degree of knowledge of seismic velocities in this
example. Despite being 1-D, our work already shows that it is not possible to approximate the full
distribution of possible ground motions using only two velocity models.
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Figure 2: Wavefield snapshots and probabilistic ground motion prediction. (a)–(f) shows wavefield
displacement snapshots at increasing time steps for one simulation. Each panel includes the source
location (yellow star), the maximum PGD up to that time step (yellow dot), and the underlying
velocity model of the simulation. The shaded region indicates where an absorbing boundary layer is
applied [26]. (g) shows a histogram of the PGD measurements from the simulations, and highlights
the median and middle 70% of predictions. Also shown are the PGD measurements resulting from
simulations using just m1 or m2 as input.

5 Limitations

This work is a proof-of-concept and can be extended in several ways. For example, we do not account
for data with varying length scales or structure, or address kernel design or choice, which would be
required for dealing with real seismic datasets. For real-world applicability, it will also be important
to extend our workflow from 1-D to 2-D and 3-D, and to solve the elastic wave equation instead of the
acoustic wave equation. Working with 3-D velocity models would add complexity, but in principle
it would consist of changing the GP coordinate space from 1-D to 3-D. There are many optimised
3-D seismic wave propagation codes that could then be used for the simulation component of the
workflow [e.g., 11, 27–29]. If the input velocity models had different spatial densities of data points,
the objective function would be weighted towards one of them, and the result would be skewed. This
can be readily solved by weighting their contributions to the objective. Additionally in this work, the
synthetic input velocity models do not have uncertainties, which we plan to incorporate in the future
(i.e., the input velocity models would themselves be probability distributions).

In this study, we were unable to compare our method with existing methods for velocity model
fusion. Current methods are generally designed for enhancing larger-scale velocity models using
smaller-scale models — and are thus not applicable when the models occupy the same domain and/or
have similar spatial data density, as in our case. Additionally, existing methods typically do not
produce probabilistic outputs, meaning it is not possible to compare them in the ground motion
prediction component of the study (Section 4).

6 Conclusion

Seismic velocity models underpin predictions of earthquake ground motion. Current methods
for physics-based seismic hazard analysis do not account for inconsistencies between existing
velocity models. In this study, we present a proof-of-concept workflow for probabilistic ground
motion prediction that takes this source of uncertainty into account. Firstly, we demonstrate the
applicability of scalable GP regression to the probabilistic fusion of input velocity models, showing
that inconsistencies between velocity models can be modelled as predictive uncertainty. This provides
access to any number of plausible velocity models for the region by drawing samples from the
predictive distribution. Secondly, we build up a distribution of possible ground motion scenarios
for the family of possible velocity models according to the GP predictive distribution. Our results
show a much wider spread of possible peak ground motions than would be predicted by simulating
earthquake scenarios using just the input velocity models themselves. We thus highlight the value of
using probabilistic methods, such as the one presented here, in physics-based seismic hazard analysis
to account for differences between velocity models.
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