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A brief introduction to AD
My ongoing work
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Vision

Functional programming languages with
deeply embedded,
general-purpose

differentiation capability, i.e., automatic differentiation (AD) in afunctional framework

We started calling this differentiable programming
Christopher Olah’s blog post (September 3, 2015)
http://colah.github.io/posts/2015-09-NN-Types-FP/
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The AD field
AD is an active research area
http://www.autodiff.org/

Traditional application domains of AD in industry and academia(Corliss et al., 2002; Griewank & Walther, 2008) include
Computational fluiddynamics
Atmospheric chemistry
Engineering designoptimization
Computational finance
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AD in probabilistic programming
(Wingate, Goodman, Stuhlmüller, Siskind. “Nonstandard interpretations
of probabilistic programs for efficient inference.” 2011)

Hamiltonian Monte Carlo (Neal, 1994)
http://diffsharp.github.io/DiffSharp/
examples-hamiltonianmontecarlo.html

No-U-Turn sampler (Hoffman & Gelman, 2011)
Riemannian manifold HMC (Girolami & Calderhead, 2011)
Optimization-based inference

Stan (Carpenter et al., 2015)
http://mc-stan.org/
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What is AD?
Many machine learning frameworks (Theano, Torch, Tensorflow,CNTK) handle derivatives for you

You build models by defining computational graphs
→ (constrained) symbolic language
→ highly limited control-flow (e.g., Theano’s scan)
The framework handles backpropagation
→ you don’t have to code derivatives(unless adding new modules)
Because derivatives are “automatic”, some call it“autodiff” or “automatic differentiation”

This is NOT the traditional meaning of automatic differentiation(AD) (Griewank & Walther, 2008)
Because “automatic” is a generic (and bad) term,
algorithmic differentiation is a better name
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What is AD?
AD does not use symbolic graphs
Gives numeric code that computes
the function AND its derivatives at a given point

f(a, b):
c = a * b
d = sin c
return d

f'(a, a', b, b'):
(c, c') = (a*b, a'*b + a*b')
(d, d') = (sin c, c' * cos c)
return (d, d')

Derivatives propagated at the elementary operation level,as a side effect, at the same time when the function itself iscomputed
→ Prevents the “expression swell” of symbolic derivatives
Full expressive capability of the host language
→ Including conditionals, looping, branching
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Function evaluation traces
All numeric evaluations are sequences of elementary operations:a “trace,” also called a “Wengert list” (Wengert, 1964)
f(a, b):

c = a * b
if c > 0

d = log c
else

d = sin c
return d

f(2, 3)

a = 2

b = 3

c = a * b = 6

d = log c = 1.791

return 1.791

(primal)

a = 2
a’ = 1
b = 3
b’ = 0
c = a * b = 6
c’ = a’ * b + a * b’ = 3
d = log c = 1.791
d’ = c’ * (1 / c) = 0.5
return 1.791, 0.5

(tangent)
i.e., a Jacobian-vector product Jf (1,0)|(2,3) = ∂

∂a f(a, b)
∣∣
(2,3) = 0.5

This is called the forward (tangent) mode of AD
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AD in a functional framework
AD has been around since the 1960s(Wengert, 1964; Speelpenning, 1980; Griewank, 1989)
The foundations for AD in a functional framework(Siskind & Pearlmutter, 2008; Pearlmutter & Siskind, 2008)
With research implementations

R6RS-AD
https://github.com/qobi/R6RS-AD

Stalingrad
http://www.bcl.hamilton.ie/~qobi/stalingrad/

Alexey Radul’s DVL
https://github.com/axch/dysvunctional-language

Recently, my DiffSharp library
http://diffsharp.github.io/DiffSharp/
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AD in a functional framework
“Generalized AD as a first-class function in an augmented
λ-calculus” (Pearlmutter & Siskind, 2008)
Forward, reverse, and any nested combination thereof,instantiated according to usage scenario
Nested lambda expressions with free-variable references

min (λx . (f x) + min (λy . g x y))
(min: gradient descent)

Must handle “perturbation confusion” (Manzyuk et al., 2012)
D (λx . x× (D (λy . x+ y) 1)) 1

d
dx

(
x
(

d
dyx+ y

)∣∣∣∣
y=1

)∣∣∣∣∣
x=1

?
= 1
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DiffSharp
http://diffsharp.github.io/DiffSharp/

implemented in F#
generalizes functional AD to high-performancelinear algebra primitives
arbitrary nesting of forward/reverse AD
a comprehensive higher-order API
gradients, Hessians, Jacobians, directionalderivatives, matrix-free Hessian- andJacobian-vector products
F#’s “code quotations” (Syme, 2006) has greatpotential for deeply embeddingtransformation-based AD
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DiffSharpHigher-order differentiation API
Op. Value Type signature AD Num. Sym.

f : R → R diff f ′ (R → R) → R → R X, F A X
diff’ (f, f ′) (R → R) → R → (R× R) X, F A X
diff2 f ′′ (R → R) → R → R X, F A X
diff2’ (f, f ′′) (R → R) → R → (R× R) X, F A X
diff2’’ (f, f ′, f ′′) (R → R) → R → (R× R× R) X, F A X
diffn f(n) N → (R → R) → R → R X, F X
diffn’ (f, f(n)) N → (R → R) → R → (R× R) X, F X

f : Rn → R grad ∇f (Rn → R) → Rn → Rn X, R A X
grad’ (f,∇f) (Rn → R) → Rn → (R× Rn) X, R A X
gradv ∇f · v (Rn → R) → Rn → Rn → R X, F A
gradv’ (f,∇f · v) (Rn → R) → Rn → Rn → (R× R) X, F A
hessian Hf (Rn → R) → Rn → Rn×n X, R-F A X
hessian’ (f,Hf ) (Rn → R) → Rn → (R× Rn×n) X, R-F A X
hessianv Hfv (Rn → R) → Rn → Rn → Rn X, F-R A
hessianv’ (f,Hfv) (Rn → R) → Rn → Rn → (R× Rn) X, F-R A
gradhessian (∇f,Hf ) (Rn → R) → Rn → (Rn × Rn×n) X, R-F A X
gradhessian’ (f,∇f,Hf ) (Rn → R) → Rn → (R× Rn × Rn×n) X, R-F A X
gradhessianv (∇f · v,Hfv) (Rn → R) → Rn → Rn → (R× Rn) X, F-R A
gradhessianv’ (f,∇f · v,Hfv) (Rn → R) → Rn → Rn → (R× R× Rn) X, F-R A
laplacian tr(Hf ) (Rn → R) → Rn → R X, R-F A X
laplacian’ (f, tr(Hf )) (Rn → R) → Rn → (R× R) X, R-F A X

f : Rn → Rm jacobian Jf (Rn → Rm) → Rn → Rm×n X, F/R A X
jacobian’ (f ,Jf ) (Rn → Rm) → Rn → (Rm × Rm×n) X, F/R A X
jacobianv Jfv (Rn → Rm) → Rn → Rn → Rm X, F A
jacobianv’ (f ,Jfv) (Rn → Rm) → Rn → Rn → (Rm × Rm) X, F A
jacobianT JT

f (Rn → Rm) → Rn → Rn×m X, F/R A X
jacobianT’ (f ,JT

f ) (Rn → Rm) → Rn → (Rm × Rn×m) X, F/R A X
jacobianTv JT

f v (Rn → Rm) → Rn → Rm → Rn X, R
jacobianTv’ (f ,JT

f v) (Rn → Rm) → Rn → Rm → (Rm × Rn) X, R
jacobianTv’’ (f ,JT

f (·)) (Rn → Rm) → Rn → (Rm × (Rm → Rn)) X, R
curl ∇× f (R3 → R3) → R3 → R3 X, F A X
curl’ (f ,∇× f) (R3 → R3) → R3 → (R3 × R3) X, F A X
div ∇ · f (Rn → Rn) → Rn → R X, F A X
div’ (f ,∇ · f) (Rn → Rn) → Rn → (Rn × R) X, F A X
curldiv (∇× f ,∇ · f) (R3 → R3) → R3 → (R3 × R) X, F A X
curldiv’ (f ,∇× f ,∇ · f) (R3 → R3) → R3 → (R3 × R3 × R) X, F A X 12/17



DiffSharp
Matrix operations
http://diffsharp.github.io/DiffSharp/api-overview.html

High-performance OpenBLAS backend by default,currently working on a CUDA-based GPU backend
Support for 64- and 32-bit floats (faster on many systems)
Benchmarking tool
http://diffsharp.github.io/DiffSharp/benchmarks.html

A growing collection of tutorials: gradient-based optimizationalgorithms, clustering, Hamiltonian Monte Carlo, neural networks,inverse kinematics
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Hype
http://hypelib.github.io/Hype/

An experimental library for “compositional machine learningand hyperparameter optimization”, built on DiffSharp
A robust optimization core

highly configurable functional modules
SGD, conjugate gradient, Nesterov, AdaGrad, RMSProp,Newton’s method
Use nested AD for gradient-based hyperparameteroptimization (Maclaurin et al., 2015)
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HypeExtracts from Hype neural network code,freely use F# and higher-order functions, don’t think aboutgradients or backpropagation
https://github.com/hypelib/Hype/blob/master/src/Hype/Neural.fs
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HypeDerivatives are instantiated within the optimization code
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Hamiltonian Monte Carlo with DiffSharp
Try it on your system: http://diffsharp.github.io/DiffSharp/
examples-hamiltonianmontecarlo.html
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Thank You!
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