Automatic Differentiation
(or Differentiable Programming)

Atihm Gines Baydin

National University of Ireland Maynooth

Joint work with Barak Pearlmutter

Alan Turing Institute, February 5, 2016

Maynooth
University
National University
Hamllton Institute ofreland Maynooth

m A brief introduction to AD
m My ongoing work

1717

Vision

Functional programming languages with
m deeply embedded,
m general-purpose

differentiation capability, i.e., automatic differentiation (AD) in a
functional framework

2/17

http://colah.github.io/posts/2015-09-NN-Types-FP/

Vision

Functional programming languages with
m deeply embedded,
m general-purpose

differentiation capability, i.e., automatic differentiation (AD) in a
functional framework

We started calling this differentiable programming

Christopher Olah’s blog post (September 3, 2015)
http://colah.github.io/posts/2015-09-NN-Types-FP/

2/17

http://colah.github.io/posts/2015-09-NN-Types-FP/

The AD field

AD is an active research area
http://www.autodiff.org/

Traditional application domains of AD in industry and academia
(Corliss et al., 2002; Griewank & Walther, 2008) include

m Computational fluid
dynamics

m Atmospheric chemistry

m Engineering design
optimization

m Computational finance

3/17

http://www.autodiff.org/

AD in probabilistic programming

(Wingate, Goodman, Stuhimiiller, Siskind. “Nonstandard interpretations
of probabilistic programs for efficient inference.” 2011)

m Hamiltonian Monte Carlo (Neal, 1994)
http://diffsharp.github.io/DiffSharp/
examples-hamiltonianmontecarlo.html

m No-U-Turn sampler (Hoffman & Gelman, 2011)
m Riemannian manifold HMC (Girolami & Calderhead, 2011)
m Optimization-based inference

Stan (Carpenter et al., 2015)
http://mc-stan.org/

4,17

http://diffsharp.github.io/DiffSharp/examples-hamiltonianmontecarlo.html
http://diffsharp.github.io/DiffSharp/examples-hamiltonianmontecarlo.html
http://mc-stan.org/

What is AD?

Many machine learning frameworks (Theano, Torch, Tensorflow,
CNTK) handle derivatives for you
m You build models by defining computational graphs

— (constrained) symbolic language
— highly limited control-flow (e.g., Theano'’s scan)

m The framework handles backpropagation
— you don't have to code derivatives
(unless adding new modules)

m Because derivatives are “automatic”, some call it
“autodiff” or “automatic differentiation”

5/17

What is AD?

Many machine learning frameworks (Theano, Torch, Tensorflow,
CNTK) handle derivatives for you

m You build models by defining computational graphs
— (constrained) symbolic language
— highly limited control-flow (e.g., Theano'’s scan)

m The framework handles backpropagation
— you don't have to code derivatives
(unless adding new modules)

m Because derivatives are “automatic”, some call it
“autodiff” or “automatic differentiation”

This is NOT the traditional meaning of automatic differentiation
(AD) (Griewank & Walther, 2008)

5/17

What is AD?

Many machine learning frameworks (Theano, Torch, Tensorflow,
CNTK) handle derivatives for you
m You build models by defining computational graphs
— (constrained) symbolic language
— highly limited control-flow (e.g., Theano'’s scan)
m The framework handles backpropagation
— you don't have to code derivatives
(unless adding new modules)

m Because derivatives are “automatic”, some call it
“autodiff” or “automatic differentiation”

This is NOT the traditional meaning of automatic differentiation
(AD) (Griewank & Walther, 2008)

Because “automatic” is a generic (and bad) term,
algorithmic differentiation is a better name

5/17

What is AD?

m AD does not use symbolic graphs

m Gives numeric code that computes
the function AND its derivatives at a given point

f(a, b): f’(a, a’, b, b?):
c=axb __ (c, ¢c’) = (axb, a’+b + ax*b’)
d = sin ¢ (d, d’) = (sin c, ¢’ * cos c)
return d return (d, d’)

m Derivatives propagated at the elementary operation level,
as a side effect, at the same time when the function itself is
computed
— Prevents the “expression swell” of symbolic derivatives

m Full expressive capability of the host language
— Including conditionals, looping, branching

6/17

Function evaluation traces

All numeric evaluations are sequences of elementary operations:
a “trace,” also called a “Wengert list” (Wengert, 1964)

f(a, b):
c=ax*xb
if ¢ >0

d = log c
else

d = sin ¢
return d

717

Function evaluation traces

All numeric evaluations are sequences of elementary operations:
a “trace,” also called a “Wengert list” (Wengert, 1964)

f(a, b):
c=ax*xb
if ¢ >0

d = log c
else

d = sin ¢
return d

£(2, 3)

717

Function evaluation traces

All numeric evaluations are sequences of elementary operations:
a “trace,” also called a “Wengert list” (Wengert, 1964)

f(a, b):
c=ax*xb
if ¢ >0

d = log c
else

d = sin ¢
return d

£(2, 3)

a=2

b=23
c=ax*xb==6

d = log c = 1.791

return 1.791

(primal)

717

Function evaluation traces

All numeric evaluations are sequences of elementary operations:

a “trace,” also called a “Wengert list” (Wengert, 1964)

f(a, b):
c=ax*xb
if ¢ >0

d = log c
else

d = sin ¢
return d

£(2, 3)

a=2
b=23
c=ax*xbs=
d =1log c =

return 1.791

(primal)

1.791

a =2

a’ =1

b =3

b> =0

c =ax*xb=6

c’> =a’> xb+ax*xb’

d =1log c=1.791
d’> =c>*x (1 /c) =0.5
return 1.791, 0.5

(tangent)

717

Function evaluation traces

All numeric evaluations are sequences of elementary operations:
a “trace,” also called a “Wengert list” (Wengert, 1964)

f(a, b): a=2 a 2
c=ax*xb a’ =1
if ¢ >0 b=3 b =3
d = log c b’ =0
else c=ax*xb=26 c =ax*xb=6
d = sin ¢ c’=a’>*xb+axb” =3
return d d =1log c =1.791 d =1log c=1.791
d’> =c>*x (1 /c) =0.5
£(2, 3) return 1.791 return 1.791, 0.5
(primal) (tangent)

i.e., a Jacobian-vector product J¢ (1,0)|; 5) = %f(a,b)\(2 3) = 0.5

This is called the forward (tangent) mode of AD

717

Function evaluation traces
f(a, b):
c=ax*xb
if ¢ >0
d = log c
else
d = sin c
return d

£(2, 3)

8/17

Function evaluation traces

f(a, b): a=2
c=ax*xhb b=23
if ¢ >0 c=a*xb=26
d = log c d =1log c =1.791
else return 1.791
d = sin c
return d (primal)

£(2, 3)

8/17

Function evaluation traces

f(a, b): a=2
c=axbhb b=3
if ¢ >0 c=ax*xb=
d = log c d = log c =
else return 1.791
d = sin c
return d (primal)
£(2, 3)

6
1.791

a =2

b =3

c =ax*xb=26

d =logc=1.791

d’ =1
c’=d> * (1 / c) =0.166
b?> = ¢’ *x a =0.333

a’ =c’” *xb=20.5
return 1.791, 0.5, 0.333

(adjoint)

8/17

Function evaluation traces

f(a, b): a=2 a =2
c=ax*xb b =23 b =3
if ¢ >0 c=a*xb=6 c =ax*xb=26
d = log c d = log c = 1.791 d =logc=1.791
else return 1.791 d’> =1
d = sin ¢ . c>=d> x (1 / c)=0.166
return d (p"mal) b’ = ¢’ *x a=0.333
a’ =c’” *xb=20.5
f(2, 3) return 1.791, 0.5, 0.333

(adjoint)

i.e., a transposed Jacobian-vector product
JZ,- (1)‘(273) = Vf|(273) = (0.5, 0333)

This is called the reverse (adjoint) mode of AD

Backpropagation is just a special case of the reverse mode:
code a neural network objective computation, apply reverse AD

8/17

AD in a functional framework

AD has been around since the 1960s
(Wengert, 1964; Speelpenning, 1980; Griewank, 1989)

The foundations for AD in a functional framework
(Siskind & Pearlmutter, 2008; Pearlmutter & Siskind, 2008)

With research implementations
m R6RS-AD
https://github.com/qobi/R6RS-AD

m Stalingrad
http://www.bcl.hamilton.ie/"qobi/stalingrad/

m Alexey Radul’'s DVL
https://github.com/axch/dysvunctional-language

m Recently, my DiffSharp library
http://diffsharp.github.io/DiffSharp/

9/17

https://github.com/qobi/R6RS-AD
http://www.bcl.hamilton.ie/~qobi/stalingrad/
https://github.com/axch/dysvunctional-language
http://diffsharp.github.io/DiffSharp/

AD in a functional framework

“Generalized AD as a first-class function in an augmented
A-calculus” (Pearlmutter & Siskind, 2008)

Forward, reverse, and any nested combination thereof,
instantiated according to usage scenario

Nested lambda expressions with free-variable references

min (Ax . (f x) + min (\y . g x y))
(min: gradient descent)

10/17

AD in a functional framework

“Generalized AD as a first-class function in an augmented
A-calculus” (Pearlmutter & Siskind, 2008)

Forward, reverse, and any nested combination thereof,
instantiated according to usage scenario

Nested lambda expressions with free-variable references

min (Ax . (f x) + min (\y . g x y))
(min: gradient descent)

Must handle “perturbation confusion” (Manzyuk et al., 2012)
Dx.xx(D(\y.x+y)M)1

A (4,
dx dy y y=1

2

=1

x=1

10/17

DiffSharp

http://diffsharp.github.io/DiffSharp/

m implemented in F#

m generalizes functional AD to high-performance
linear algebra primitives

m arbitrary nesting of forward/reverse AD

m a comprehensive higher-order API

m gradients, Hessians, Jacobians, directional
derivatives, matrix-free Hessian- and
Jacobian-vector products

m F#'s “code quotations” (Syme, 2006) has great

potential for deeply embedding
transformation-based AD

/17

http://diffsharp.github.io/DiffSharp/

DiffSharp

Higher-order differentiation API

Op. Value Type signature AD Num. Sym.
f:R—=>R diff (R—-R)—>R—R X, F A X
diff’ f, £ (]P —+R) >R — (RxR) X, F A X
diff2 o) — R X,F A X
diff2’ f " X, F A X
diff2?? TN —R— (RxRxR) X,F A X
diffn Fm X, F X
diffn’ (f £y 2 = (R x R) X, F X
fiR" R grad X,R A X
grad’ (f, Vf) — (]R x R™) X,R A X
gradv SR 5 R X,F A
gradv’ (f, vf v) —R" — (R xR) X, F A
hessian H; g X,R-F A X
hessian’ (f. Hy)) = R™ — (R x R*m) X,R-F A X
hessianv Hyv) = R" - R" - R X,F-R A
hessianv’ (f Hyv) R — (R x R™) X, F-R A
gradhessian (Vf, Hy) x RXm) X,R-F A X
gradhessian’ (f, V[, Hy) — R™ — (R x R™ x R"Xn) X,R-F A X
gradhessianv (Vf-v,H;v) —R" = (R x R") X, F-R A
gradhessianv’ (f,Vf-v,Hsv) —R" — (R x R x R") X,F-R A
laplacian tr(Hy) SR X,R-F A X
laplacian’ (f, cr(Hf)) R™ — (R x R) X,R-F A X
f:R” —R™ jacobian Je — R® — R™X" X, F/R A X
jacobian’ (£,35) — R™ — (R™ x Rmxn) X,F/R A X
Jjacobianv Jev —R™ 5 R" 5 R™ X,F A
jacobianv’ (F,J¢v) R — R"™ - R" - (R™ x R™) X,F A
jacobianT a7 (R™ — R™) — R — R?Xm X, F/R A X
jacobianT’ (£,97 — R™) = R" - (R™ x R"*™) X, F/R A X
jacobianTv Ity m) R® — R™ — R" X, R
jacobianTv’ (£,]v) 3 ™) R" = R™ — (R™ x R™) X, R
jacobianTv’’ (f,J7(-) (R" = R™) — R" - (R™ x (R™ — R™)) X, R
curl Vxf R X,F A X
curl’ (£,V x f) X,F A X
div -f X, F A X
div’ (£, V-f) X,F A X
curldiv (Vxf£,V-f) X,F A X
curldiv’ £,V xf,V-f) (B SR)~> X, F A X

12/17

DiffSharp

Matrix operations
http://diffsharp.github.io/DiffSharp/api-overview.html

High-performance OpenBLAS backend by default,
currently working on a CUDA-based GPU backend

Support for 64- and 32-bit floats (faster on many systems)

Benchmarking tool
http://diffsharp.github.io/DiffSharp/benchmarks.html

A growing collection of tutorials: gradient-based optimization
algorithms, clustering, Hamiltonian Monte Carlo, neural networks,
inverse kinematics

13/17

http://diffsharp.github.io/DiffSharp/api-overview.html
http://diffsharp.github.io/DiffSharp/benchmarks.html

Hype

http://hypelib.github.io/Hype/

An experimental library for “compositional machine learning
and hyperparameter optimization”, built on DiffSharp

A robust optimization core
m highly configurable functional modules

m SGD, conjugate gradient, Nesterov, AdaGrad, RMSProp,
Newton’s method

m Use nested AD for gradient-based hyperparameter
optimization (Maclaurin et al., 2015)

14/17

http://hypelib.github.io/Hype/

Hype

Extracts from Hype neural network code,

freely use F# and higher-order functions, don't think about
gradients or backpropagation
https://github.com/hypelib/Hype/blob/master/src/Hype/Neural.fs

open DiffSharp.AD.Float32

type O
inherit Layer()

override n.Run(x:DM) = Array.fold Layer.run x layers

type (inputs , memcells)
inherit Layer()

28
4:
5:
6:
7:
8:
9:

override 1.Run (x)
X DM.mapCols
(fun x ->

let z = sigmoid(l.Wxz * x + 1.Whz
let r sigmoid(1l.Wxr X 1.Whr
let h' tanh(1.Wxh X 1 .wWhh (1.h
1.h .f - z) h* z 1.h
1.h)

15/17

https://github.com/hypelib/Hype/blob/master/src/Hype/Neural.fs

Hype

Derivatives are instantiated within the optimization code

type Method
| CG ->
fun w f g p gradclip ->
let v', g' grad' f w
let g’ gradclip g’
lety = g' g
let b =(g" *y)/ (p*y)
let p* = -g P
v, g, p’
| NewtonCG ->
fun w f _ p gradclip ->
let v', g' grad' f w
let g’ gradclip g’
let hv = hessianv f w p
let b (g' hv) (p hv)
let p* g' b *p
v, g'. p'
| Newton ->
fun w f _ _ gradclip ->
let v', g', h* gradhessian® f w
let g’ gradclip g'
let p* DM.solveSymmetric h* g*
v, g, p'

Hamiltonian Monte Carlo with DiffSharp

Try it on your system: http://diffsharp.github.io/DiffSharp/
examples-hamiltonianmontecarlo.html

: let leapFrog (u:DV->D) (k:DV->D) (d:D) steps (x0, p0)
let hd = d /7 2.
[1..steps]
List.fold (fun (x, p) _ ->
let p' p - hd * grad u x
let x' X +d * grad k p’
x', p' hd grad u x') (x0, p0)

: let hmc n hdelta hsteps (x0:DV) (f:DV->D)

let u x log (f x)

let k p p * p) D 2.

let hamilton x p = u x + k p

let x ref x0

[|for i in 1..n do
let p DV.init x0.Length (fun _ -> rndn())
let x', p' leapFrog u k hdelta hsteps (!x, p)
if rnd() float (exp ((hamilton !x p) (hamilton x' p'))) then x
yield !x|1]

http://diffsharp.github.io/DiffSharp/examples-hamiltonianmontecarlo.html
http://diffsharp.github.io/DiffSharp/examples-hamiltonianmontecarlo.html

Thank You!

References

+ Baydin AG, Pearlmutter BA, Radul AA, Siskind JM (Submitted) Automatic differentiation in machine learning: a survey [arXiv:1502.05767]

+ Baydin AG, Pearimutter BA, Siskind JM (: i DiffSharp: ic dif library [arXiv:1511.07727]

+ Carpenter B, Hoffman MD, Brubaker M, Lee D, Li P, Betancourt M (2015) The Stan math library: d iation in C++. [arXiv:1509.07164]
Griewank A, Walther A (2008) Evaluating Derivati inciples and i of ithmic Dif i Society for Industrial and Applied Mathematics,
Philadelphia [DOI 10.1137/1.9780898717761]

+ Maclaurin D, David D, Adams RP (2015) Gradient-based } Optimi through ible Learning [arXiv:1502.03492]

+ Manzyuk O, Pearlmutter BA, Radul AA, Rush DR, Siskind JM (2012) Confusion of tagged per in forward ic di of higher-order functions
[arXiv:1211.4892]

Pearlmutter BA, Siskind JM (2008) R de AD ina Lambda the ultimate backpropagator. ACM TOPLAS 30(2):7 [DOI
10.1145/1330017.1330018]

Siskind JM, Pearlmutter BA (2008) Nesting forward-mode AD in a . Higher Order and Symbolic Computation 21(4):361-76 [DOI
10.1007/510990-008-9037-1]

- Syme D (2006) Leveraging .NET meta-p i from F#: queries and i ttion. 2006 p on ML.
ACM.

Wengert R (1964) A simple derivative program. Ct ications of the ACM 7:463-4

