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m A brief introduction to AD
m My ongoing work

1717



Vision

Functional programming languages with
m deeply embedded,
m general-purpose

differentiation capability, i.e., automatic differentiation (AD) in a
functional framework
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Vision

Functional programming languages with
m deeply embedded,
m general-purpose

differentiation capability, i.e., automatic differentiation (AD) in a
functional framework

We started calling this differentiable programming

Christopher Olah’s blog post (September 3, 2015)
http://colah.github.io/posts/2015-09-NN-Types-FP/
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The AD field

AD is an active research area
http://www.autodiff.org/

Traditional application domains of AD in industry and academia
(Corliss et al., 2002; Griewank & Walther, 2008) include

m Computational fluid
dynamics

m Atmospheric chemistry

m Engineering design
optimization

m Computational finance
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AD in probabilistic programming

(Wingate, Goodman, Stuhimiiller, Siskind. “Nonstandard interpretations
of probabilistic programs for efficient inference.” 2011)

m Hamiltonian Monte Carlo (Neal, 1994)
http://diffsharp.github.io/DiffSharp/
examples-hamiltonianmontecarlo.html

m No-U-Turn sampler (Hoffman & Gelman, 2011)
m Riemannian manifold HMC (Girolami & Calderhead, 2011)
m Optimization-based inference

Stan (Carpenter et al., 2015)
http://mc-stan.org/
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What is AD?

Many machine learning frameworks (Theano, Torch, Tensorflow,
CNTK) handle derivatives for you
m You build models by defining computational graphs

— (constrained) symbolic language
— highly limited control-flow (e.g., Theano'’s scan)

m The framework handles backpropagation
— you don't have to code derivatives
(unless adding new modules)

m Because derivatives are “automatic”, some call it
“autodiff” or “automatic differentiation”
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What is AD?

Many machine learning frameworks (Theano, Torch, Tensorflow,
CNTK) handle derivatives for you
m You build models by defining computational graphs
— (constrained) symbolic language
— highly limited control-flow (e.g., Theano'’s scan)
m The framework handles backpropagation
— you don't have to code derivatives
(unless adding new modules)

m Because derivatives are “automatic”, some call it
“autodiff” or “automatic differentiation”

This is NOT the traditional meaning of automatic differentiation
(AD) (Griewank & Walther, 2008)

Because “automatic” is a generic (and bad) term,
algorithmic differentiation is a better name
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What is AD?

m AD does not use symbolic graphs

m Gives numeric code that computes
the function AND its derivatives at a given point

f(a, b): f’(a, a’, b, b?):
c=axb __ (c, ¢c’) = (axb, a’+b + ax*b’)
d = sin ¢ (d, d’) = (sin c, ¢’ * cos c)
return d return (d, d’)

m Derivatives propagated at the elementary operation level,
as a side effect, at the same time when the function itself is
computed
— Prevents the “expression swell” of symbolic derivatives

m Full expressive capability of the host language
— Including conditionals, looping, branching
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Function evaluation traces

All numeric evaluations are sequences of elementary operations:
a “trace,” also called a “Wengert list” (Wengert, 1964)

f(a, b):
c=ax*xb
if ¢ >0

d = log c
else

d = sin ¢
return d
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Function evaluation traces

All numeric evaluations are sequences of elementary operations:
a “trace,” also called a “Wengert list” (Wengert, 1964)

f(a, b):
c=ax*xb
if ¢ >0

d = log c
else

d = sin ¢
return d

£(2, 3)
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Function evaluation traces

All numeric evaluations are sequences of elementary operations:
a “trace,” also called a “Wengert list” (Wengert, 1964)

f(a, b):
c=ax*xb
if ¢ >0

d = log c
else

d = sin ¢
return d

£(2, 3)

a=2

b=23
c=ax*xb==6

d = log c = 1.791

return 1.791

(primal)
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Function evaluation traces

All numeric evaluations are sequences of elementary operations:

a “trace,” also called a “Wengert list” (Wengert, 1964)

f(a, b):
c=ax*xb
if ¢ >0

d = log c
else

d = sin ¢
return d

£(2, 3)

a=2
b=23
c=ax*xbs=
d =1log c =

return 1.791

(primal)

1.791

a =2

a’ =1

b =3

b> =0

c =ax*xb=6

c’> =a’> xb+ax*xb’

d =1log c=1.791
d’> =c>*x (1 /c) =0.5
return 1.791, 0.5

(tangent)
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Function evaluation traces

All numeric evaluations are sequences of elementary operations:
a “trace,” also called a “Wengert list” (Wengert, 1964)

f(a, b): a=2 a 2
c=ax*xb a’ =1
if ¢ >0 b=3 b =3
d = log c b’ =0
else c=ax*xb=26 c =ax*xb=6
d = sin ¢ c’=a’>*xb+axb” =3
return d d =1log c =1.791 d =1log c=1.791
d’> =c>*x (1 /c) =0.5
£(2, 3) return 1.791 return 1.791, 0.5
(primal) (tangent)

i.e., a Jacobian-vector product J¢ (1,0)|; 5) = %f(a,b)\(2 3) = 0.5

This is called the forward (tangent) mode of AD
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Function evaluation traces
f(a, b):
c=ax*xb
if ¢ >0
d = log c
else
d = sin c
return d

£(2, 3)
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Function evaluation traces

f(a, b): a=2
c=ax*xhb b=23
if ¢ >0 c=a*xb=26
d = log c d =1log c =1.791
else return 1.791
d = sin c
return d (primal)

£(2, 3)
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Function evaluation traces

f(a, b): a=2
c=axbhb b=3
if ¢ >0 c=ax*xb=
d = log c d = log c =
else return 1.791
d = sin c
return d (primal)
£(2, 3)

6
1.791

a =2

b =3

c =ax*xb=26

d =logc=1.791

d’ =1
c’=d> * (1 / c) =0.166
b?> = ¢’ *x a =0.333

a’ =c’” *xb=20.5
return 1.791, 0.5, 0.333

(adjoint)
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Function evaluation traces

f(a, b): a=2 a =2
c=ax*xb b =23 b =3
if ¢ >0 c=a*xb=6 c =ax*xb=26
d = log c d = log c = 1.791 d =logc=1.791
else return 1.791 d’> =1
d = sin ¢ . c>=d> x (1 / c)=0.166
return d (p"mal) b’ = ¢’ *x a=0.333
a’ =c’” *xb=20.5
f(2, 3) return 1.791, 0.5, 0.333

(adjoint)

i.e., a transposed Jacobian-vector product
JZ,- (1)‘(273) = Vf|(273) = (0.5, 0333)

This is called the reverse (adjoint) mode of AD

Backpropagation is just a special case of the reverse mode:
code a neural network objective computation, apply reverse AD
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AD in a functional framework

AD has been around since the 1960s
(Wengert, 1964; Speelpenning, 1980; Griewank, 1989)

The foundations for AD in a functional framework
(Siskind & Pearlmutter, 2008; Pearlmutter & Siskind, 2008)

With research implementations
m R6RS-AD
https://github.com/qobi/R6RS-AD

m Stalingrad
http://www.bcl.hamilton.ie/"qobi/stalingrad/

m Alexey Radul’'s DVL
https://github.com/axch/dysvunctional-language

m Recently, my DiffSharp library
http://diffsharp.github.io/DiffSharp/
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AD in a functional framework

“Generalized AD as a first-class function in an augmented
A-calculus” (Pearlmutter & Siskind, 2008)

Forward, reverse, and any nested combination thereof,
instantiated according to usage scenario

Nested lambda expressions with free-variable references

min (Ax . (f x) + min (\y . g x y))
(min: gradient descent)

10/17



AD in a functional framework

“Generalized AD as a first-class function in an augmented
A-calculus” (Pearlmutter & Siskind, 2008)

Forward, reverse, and any nested combination thereof,
instantiated according to usage scenario

Nested lambda expressions with free-variable references

min (Ax . (f x) + min (\y . g x y))
(min: gradient descent)

Must handle “perturbation confusion” (Manzyuk et al., 2012)
Dx.xx(D(\y.x+y)M)1

A (4,
dx dy y y=1

2

=1

x=1
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DiffSharp

http://diffsharp.github.io/DiffSharp/

m implemented in F#

m generalizes functional AD to high-performance
linear algebra primitives

m arbitrary nesting of forward/reverse AD

m a comprehensive higher-order API

m gradients, Hessians, Jacobians, directional
derivatives, matrix-free Hessian- and
Jacobian-vector products

m F#'s “code quotations” (Syme, 2006) has great

potential for deeply embedding
transformation-based AD
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DiffSharp

Higher-order differentiation API

Op. Value Type signature AD Num. Sym.
f:R—=>R diff (R—-R)—>R—R X, F A X
diff’ f, £ (]P —+R) >R — (RxR) X, F A X
diff2 o ) — R X,F A X
diff2’ f " X, F A X
diff2?? TN —R— (RxRxR) X,F A X
diffn Fm X, F X
diffn’ (f £y 2 = (R x R) X, F X
fiR" R grad X,R A X
grad’ (f, Vf) — (]R x R™) X,R A X
gradv SR 5 R X,F A
gradv’ (f, vf v) —R" — (R xR) X, F A
hessian H; g X,R-F A X
hessian’ (f. Hy) ) = R™ — (R x R*m) X,R-F A X
hessianv Hyv ) = R" - R" - R X,F-R A
hessianv’ (f Hyv) R — (R x R™) X, F-R A
gradhessian  (Vf, Hy) x RXm) X,R-F A X
gradhessian’  (f, V[, Hy) — R™ — (R x R™ x R"Xn) X,R-F A X
gradhessianv  (Vf-v,H;v) —R" = (R x R") X, F-R A
gradhessianv’ (f,Vf-v,Hsv) —R" — (R x R x R") X,F-R A
laplacian tr(Hy) SR X,R-F A X
laplacian’ (f, cr(Hf)) R™ — (R x R) X,R-F A X
f:R” —R™ jacobian Je — R® — R™X" X, F/R A X
jacobian’ (£,35) — R™ — (R™ x Rmxn) X,F/R A X
Jjacobianv Jev —R™ 5 R" 5 R™ X,F A
jacobianv’ (F,J¢v) R — R"™ - R" - (R™ x R™) X,F A
jacobianT a7 (R™ — R™) — R — R?Xm X, F/R A X
jacobianT’ (£,97 — R™) = R" - (R™ x R"*™) X, F/R A X
jacobianTv Ity m)  R® — R™ — R" X, R
jacobianTv’  (£,]v) 3 ™) R" = R™ — (R™ x R™) X, R
jacobianTv’’  (f,J7(-) (R" = R™) — R" - (R™ x (R™ — R™)) X, R
curl Vxf R X,F A X
curl’ (£,V x f) X,F A X
div -f X, F A X
div’ (£, V-f) X,F A X
curldiv (Vxf£,V-f) X,F A X
curldiv’ £,V xf,V-f) (B SR )~> X, F A X
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DiffSharp

Matrix operations
http://diffsharp.github.io/DiffSharp/api-overview.html

High-performance OpenBLAS backend by default,
currently working on a CUDA-based GPU backend

Support for 64- and 32-bit floats (faster on many systems)

Benchmarking tool
http://diffsharp.github.io/DiffSharp/benchmarks.html

A growing collection of tutorials: gradient-based optimization
algorithms, clustering, Hamiltonian Monte Carlo, neural networks,
inverse kinematics
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Hype

http://hypelib.github.io/Hype/

An experimental library for “compositional machine learning
and hyperparameter optimization”, built on DiffSharp

A robust optimization core
m highly configurable functional modules

m SGD, conjugate gradient, Nesterov, AdaGrad, RMSProp,
Newton’s method

m Use nested AD for gradient-based hyperparameter
optimization (Maclaurin et al., 2015)
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Hype

Extracts from Hype neural network code,

freely use F# and higher-order functions, don't think about
gradients or backpropagation
https://github.com/hypelib/Hype/blob/master/src/Hype/Neural.fs

open DiffSharp.AD.Float32

type O
inherit Layer()

override n.Run(x:DM) = Array.fold Layer.run x layers

type (inputs , memcells )
inherit Layer()

28
4:
5:
6:
7:
8:
9:

override 1.Run (x )
X DM.mapCols
(fun x ->

let z = sigmoid(l.Wxz * x + 1.Whz
let r sigmoid(1l.Wxr X 1.Whr
let h' tanh(1.Wxh X 1 .wWhh (1.h
1.h .f - z) h* z 1.h
1.h)
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Hype

Derivatives are instantiated within the optimization code

type Method
| CG ->
fun w f g p gradclip ->
let v', g' grad' f w
let g’ gradclip g’
lety = g' g
let b =(g" *y)/ (p*y)
let p* = -g P
v, g, p’
| NewtonCG ->
fun w f _ p gradclip ->
let v', g' grad' f w
let g’ gradclip g’
let hv = hessianv f w p
let b (g' hv) (p hv)
let p* g' b *p
v, g'. p'
| Newton ->
fun w f _ _ gradclip ->
let v', g', h* gradhessian® f w
let g’ gradclip g'
let p* DM.solveSymmetric h* g*
v, g, p'




Hamiltonian Monte Carlo with DiffSharp

Try it on your system: http://diffsharp.github.io/DiffSharp/
examples-hamiltonianmontecarlo.html

: let leapFrog (u:DV->D) (k:DV->D) (d:D) steps (x0, p0)
let hd = d /7 2.
[1..steps]
List.fold (fun (x, p) _ ->
let p' p - hd * grad u x
let x' X +d * grad k p’
x', p' hd grad u x') (x0, p0)

: let hmc n hdelta hsteps (x0:DV) (f:DV->D)

let u x log (f x)

let k p p * p) D 2.

let hamilton x p = u x + k p

let x ref x0

[|for i in 1..n do
let p DV.init x0.Length (fun _ -> rndn())
let x', p' leapFrog u k hdelta hsteps (!x, p)
if rnd() float (exp ((hamilton !x p) (hamilton x' p'))) then x
yield !x|1]



http://diffsharp.github.io/DiffSharp/examples-hamiltonianmontecarlo.html
http://diffsharp.github.io/DiffSharp/examples-hamiltonianmontecarlo.html

Thank You!
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