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1 Introduction

Over the past decade, the study of extrasolar planets has evolved rapidly from plain detection
and identification to comprehensive categorization and characterization of exoplanet systems and
their atmospheres. Atmospheric retrieval, the inverse modeling technique used to determine an
exoplanetary atmosphere’s temperature structure and composition from an observed spectrum, is
both time-consuming and compute-intensive, requiring complex algorithms that compare thousands
to millions of atmospheric models to the observational data to find the most probable values and
associated uncertainties for each model parameter [12]. For rocky, terrestrial planets, the retrieved
atmospheric composition can give insight into the surface fluxes of gaseous species necessary to
maintain the stability of that atmosphere, which may in turn provide insight into the geological
and/or biological processes active on the planet [16]. These atmospheres contain many molecules,
some of them biosignatures, spectral fingerprints indicative of biological activity, which will become
observable with the next generation of telescopes [5]. Runtimes of traditional retrieval models scale
with the number of model parameters, so as more molecular species are considered, runtimes can
become prohibitively long. Recent advances in machine learning (ML) and computer vision [11, 8]
offer new ways to reduce the time to perform a retrieval by orders of magnitude [13, 23], given a
sufficient data set to train with. Here we present an ML-based retrieval framework called Intelligent
exoplaNet Atmospheric RetrievAl (INARA) that consists of a Bayesian deep learning model for
retrieval and a data set of 3,000,000 synthetic rocky exoplanetary spectra generated using the NASA
Planetary Spectrum Generator (PSG) [20]. Our work represents the first ML retrieval model for rocky,
terrestrial exoplanets and the first synthetic data set of terrestrial spectra generated at this scale.
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Figure 1: Predictions of H2O, CO2, O2, N2, CH4 based on the best performing model; training
limited to 64 epochs on 110,000 parameter–spectra pairs hence some uncertainties reflect calibration
issues.

2 Background

Traditionally, the study of exoplanetary atmospheres has been done by fitting forward models to
observational data, which is based on the relative decrease in flux when the exoplanet is in front
of or behind its host star [3, 4]. This is usually performed using a Monte Carlo sampling method
in a Bayesian framework to propose atmospheric models, simulate the spectrum, and compare it
to the observed data [e.g., 17, 19]. Degeneracies among atmospheric parameters complicate this
process, necessitating the evaluation of hundreds of thousands to millions of atmospheric models to
fully explore the parameter space. This results in a posterior distribution which characterizes these
degeneracies and informs the relative probability of the ranges of values considered for each model
parameter. While these sampling methods are executed in parallel, this task still requires a significant
amount of computational time [12].

Recently, the exoplanet community has begun to apply supervised ML methods to the problem of
atmospheric retrieval. Waldmann [21] used a deep belief network to identify molecular species in
an observed spectrum, paving the way for more advanced ML applications. Building upon this, two
ML retrieval algorithms have been developed to date: ExoGAN [23] and HELA [13]. These produce
results in seconds to minutes, compared to on the order of 100 CPU hours for the aforementioned
traditional Monte Carlo sampling-based methods. ExoGAN utilizes a generative adversarial network
(GAN) [7] to approximate the data distribution of realistic spectra and then uses the trained GAN to
make predictions using inpainting to infer planetary conditions from observed spectra. HELA uses
random forests [10] to similarly make predictions of planetary parameters from observed spectra.
Both models produce results that are generally consistent with conventional retrieval methods. Note
that these models specialize in hot Jupiters, a class of gas giant exoplanets on very short-period orbits,
and consider less than a handful of molecules.

3 Methods

We train a deep neural network in a supervised setting to predict exoplanet atmospheric parameters
θ given an observed spectrum s, using a training set (si,θi), i = 1, . . . ,m that we generate by
running the NASA PSG1 [20] simulator to get si = psg(θi), where the parameters are sampled from
a physically-motivated prior model θi ∼ p(θ). Spectra si are vectors (of length 4379) describing
radiation intensity as a scalar function of wavelength and therefore we explore a series of 1D
convolutional neural network (CNN) configurations. In order to train our CNN models, we generate a
data set encompassing spectra based on a given planetary system model, where we consider F-, G-, K-,

1https://psg.gsfc.nasa.gov/

2

https://psg.gsfc.nasa.gov/


Table 1: Comparison of atmospheric retrieval methods.

Method CPU time for inference Number of molecules retrieved

Traditional Hundreds of hours User-specified
ExoGAN [23] Minutes 4
HELA [13] Seconds 3
INARA Seconds 12

and M-type main sequence stars. Observations are simulated using an instrument model of the Large
UltraViolet/Optical/InfraRed Surveyor (LUVOIR), a design concept for a multi-wavelength space
observatory, but with a much higher resolution. The prior model p(θ) comprises planetary parameters
(radius, mass, surface pressure, semi-major axis, pressure temperature profile) and atmospheric
compositions. Planetary parameters are randomly selected from ranges and distributions consistent
with our solar system and observations of other systems [1, 2, 14, 15, 18, 22]. The ranges for these
parameters are chosen such that a planet in an Earth-like orbit can vary in temperature by a few
hundred Kelvin. We consider 12 molecules based on the composition of atmospheres in our solar
system as well as the observability of species [5]: H2O, CO2, O2, N2, CH4, N2O, CO, O3, SO2,
NH3, C2H6, and NO2. Concentrations are randomly selected within a range based on the observed
composition of atmospheres in our solar system. While cloud mixing ratios are calculated, clouds are
ignored in our simulations due to the computational burden as even poor modeling efforts increase
computational time by a factor of 50.

We use the Monte Carlo dropout approximation to produce predictive distributions over parameters θ.
Dropout is a common regularization technique in neural networks to prevent overfitting and allow for
a more generalizable model [9]. It has recently been shown that applying dropout at both training
and test time is equivalent to making a variational approximation to the posterior distribution over
the network weights [6]. Each dropout mask removes a certain proportion of weights by setting
them to zero during a forward pass. Therefore, multiple forward passes with different dropout masks
for the same input gives a set of predictive samples that build a predictive distribution. Through
implementing dropout both at training and test time, we are effectively sampling from the posterior
over weights of the network. This distribution over the weights enables us to approximate a predictive
distribution p(θ|s) over the parameters of an exoplanet given an observed spectrum.

INARA is implemented in Python using PyTorch, and the source code and a Docker image are
publicly available.2 To interact with NASA Goddard PSG, the simulator at the core of our spectrum
generation setup, we implemented a Python package called pypsg3 that handles data generation
in PSG format and http-based two-way communication with PSG servers. The INARA codebase
covers the running of server instances for data generation, ML model training, and inference in a
distributed fashion utilizing the Google Cloud infrastructure. For the generation of the data set of
3M parameter and spectrum pairs, we employed approximately 2,000 high-end VMs (groups of 16
INARA instances connected to one PSG node).

4 Preliminary Results, Discussion, and New Horizons

We performed a grid search over model architectures and training hyperparameters, exploring over
70 combinations of different architectures (linear regression, feed-forward neural networks, and
CNNs), learning rates in [0.0001, 0.01], activation functions in {tanh, ReLU, ELU}, and optimization
algorithms {ADAM, SGD, ADAdelta, RMSProp}. No dropout was used in this phase. Due to
time constraints, model training was set to 64 epochs in all cases, using a training set of 110,000
parameter–spectra pairs. We used a mean square error (MSE) loss, and employed early stopping
with a validation set of size 10,000 to avoid overfitting. 1D CNNs produced the best results, and we
settled on a model with the configuration Conv1d(64)–tanh–MaxPool–Conv1d(64)–relu–MaxPool–
Conv1d(128)–relu–MaxPool–Conv1d(256)–relu–FC(256)–relu–FC(12), which has approximately
18M trainable parameters.

Here we report results of the best 1D CNN model trained using 110,000 parameter–spectra pairs out
of the 3M data set, leaving results with the full training set to future work. The prediction for 1,000

2https://gitlab.com/frontierdevelopmentlab/astrobiology/inara
3https://gitlab.com/frontierdevelopmentlab/astrobiology/pypsg
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spectra is illustrated in Figure 1. H2O, CO2, O2, N2 and CH4 are shown in the five plots in Figure 1
top row, where each dot represents the average of 600 runs of our model with dropout for each planet.
The details for predictive joint distributions for a random planet among those simulated is shown in
the two bottom plots of Figure 1. The true value, indicated by the red star and the red line, falls within
the predictive distribution for both parameters. Figure 2 in the appendix presents predictions for the
full set of 12 molecules. INARA outperforms traditional Monte Carlo-based approaches by several
orders of magnitude while computing a larger set of parameters and atmospheric molecules (Table 1).

Thanks to the computational resources we had access to, our present data set is the largest collection
of rocky planet spectra to date. For the first time in ML atmospheric retrieval, we adopted Monte
Carlo dropout [6], providing a predictive distribution comparable to the posterior distributions
yielded by traditional, Bayesian approaches. Further investigation is necessary to determine how
this predictive distribution compares to the posterior distributions of traditional methods. While we
obtained good results, our search for the best model is incomplete, and a thorough exploration of
different neural network architectures is desirable. In addition, a more detailed data set (i.e., in terms
of wavelength, self-consistency, and the presence of clouds/hazes) could be used with INARA to
generate more reliable and scientifically-informative models.
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Appendix

Figure 2: Posterior results with all 12 molecules in the model.
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